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ABSTRACT

This paper describes our work which is based on discovering context for text document
categorization.The document categorization approach is derived from a combination of a learning
paradigm known as relation extraction and an technique known as context discovery. We demonstrate
the effectiveness of our categorization approach using reuters 21578 dataset and synthetic real world data
from sports domain. Our experimental results indicate that the learned context greatly improves the
categorization performance as compared to traditional categorization approaches.
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FOCUSED WEB CRAWLING USING DECAY CONCEPT AND GENETIC PROGRAMMING
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ABSTRACT

The ongoing rapid growth of web information is a theme of research in many papers. In this paper, we
introduce a new optimized method for web crawling. Using genetic programming enhances the accuracy
of simialrity measurement. This measurement applies to different parts of the web pages including thetitle
and the body. Consequently, the crawler uses such optimized similarity measurement to traverse the pages
.To enhance the accuracy of crawling, we use the decay concept to limit the crawler to theeffective web
pages in accordance to search criteria. The decay measurements give every page a score according to the
search criteria. It decreases while traversing in more depth. This value could be revised according to the
similarity of the page to the search criteria. In such case, we use three kinds of measurement to set the
thresholds. The results show using Genetic programming along the dynamic decay thresholds leads to the
best accuracy.
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A WEB REPOSITORY SYSTEM FOR DATA MINING IN DRUG DISCOVERY

Jiali Tang, Jack Wang and Ahmad Reza Hadaegh

Department of Computer Science and Information System, California State University San
Marcos, San Marcos, USA

ABSTRACT

This project is to produce a repository database system of drugs, drug features (properties), and drug
targets where data can be mined and analyzed. Drug targets are different proteins that drugs try to bind
to stop the activities of the protein. Users can utilize the database to mine useful data to predict the specific
chemical properties that will have the relative efficacy of a specific target and the coefficient for each
chemical property. This database system can be equipped with different data mining
approaches/algorithms such as linear, non-linear, and classification types of data modelling. The data
models have enhanced with the Genetic Evolution (GE) algorithms. This paper discusses implementation
with the linear data models such as Multiple Linear Regression (MLR), Partial Least Square Regression
(PLSR), and Support Vector Machine (SVM).
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ABSTRACT

It is well known that solar energetic phenomena influence the Space Weather, in special those directed to
the Earth environment. In this context, the analysis of Solar Data is a challenging task, particularly when
are composed of Satellite Image Time Series (SITS). It is a multidisciplinary domain that generates a
massive amount of data (several Gigabytes per year). It includes image processing, spatiotemporal
characteristics, and the processing of semantic data. Aiming to enhance the SITS analysis, we propose an
algorithm called "Miner of Thematic Spatiotemporal Associations for Images" (MiTSAI), which is an
extractor of Thematic Spatiotemporal Association Rules (TSARs) from Solar SITS. Here, a description
is given about the details of the modern algorithm MITSAI, which is an extractor of Thematic
Spatiotemporal Association Rules (TSARs) from solar Satellite Image Time Series (SITS). In addition,
its adaptation to the Space Weather and discussion about the specific use in favor of forecasting activities
are presented. Finally, some results of its application specifically to solar flare forecasting are also
presented. MiTSAI has to extract interesting new patterns compared with the art-state algorithms.
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PETROCHEMICAL PRODUCTION BIG DATA AND
ITS FOUR TYPICAL APPLICATION PARADIGMS

Hu Shaolin* , Zhang Qinghua, Su Naiquan, and Li Xiwu
Guangdong University of Petrochemical Technology, Maoming, Guangdong, China

ABSTRACT

In recent years, the big data has attracted more and more attention. It can bring us more information and
broader perspective to analyse and deal with problems than the conventional situation. However, so far,
there is no widely acceptable and measurable definition for the term “big data”. For example, what
significant features a data set needs to have can be called big data, and how large a data set is can becalled
big data, and so on. Although the "5V" description widely used in textbooks has been tried to solve the
above problems in many big data literatures, "5V" still has significant shortcomings and limitations, and
is not suitable for completely describing big data problems in practical fields such as industrial
production. Therefore, this paper creatively puts forward the new concept of data cloud and the data
cloud-based "3M" descriptive definition of big data, which refers to a wide range of data sources
(Multisource), ultra-high dimensions (Multi-dimensional) and a long enough time span (Multi-
spatiotemporal). Based on the 3M description of big data, this paper sets up four typical application
paradigms for the production big data, analyses the typical application of four paradigms of big data, and
lays the foundation for applications of big data from petrochemical industry.
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SEMANTICS GRAPH MINING FOR TOPIC DISCOVERY AND WORD
ASSOCIATIONS

Alex Romanova
Melenar, LLC, McLean, VA, USA
ABSTRACT

Big Data creates many challenges for data mining experts, in particular in getting meanings of text data.
It is beneficial for text mining to build a bridge between word embedding process and graph capacity to
connect the dots and represent complex correlations between entities. In this study we examine processes
of building a semantic graph model to determine word associations and discover document topics. We
introduce a novel Word2Vec2Graph model that is built on top of Word2Vec word embedding model. We
demonstrate how this model can be used to analyze long documents, get unexpected word associations
and uncover document topics. To validate topic discovery method we transfer words to vectors and
vectors to images and use CNN deep learning image classification.
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ABSTRACT

Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics which is
accomplished by substituting each point in a given dataset with a Gaussian. The width of the Gaussian is
a o value, a hyper-parameter which can be manually defined and manipulated to suit the application.
Numerical methods are used to find all the minima of the quantum potential as they correspond to cluster
centers. Herein, we investigate the mathematical task of expressing and finding all the roots of the
exponential polynomial corresponding to the minima of a two-dimensional quantum potential. This is an
outstanding task because normally such expressions are impossible to solve analytically. However, we
prove that if the points are all included in a square region of size o, there is only one minimum. This
bound is not only useful in the number of solutions to look for, by numerical means, it allows to to propose
a new numerical approach “per block”. This technique decreases the number of particles by
approximating some groups of particles to weighted particles. These findings are not only useful to the
guantum clustering problem but also for the exponential polynomials encountered in quantum chemistry,
Solid-state Physics and other applications.
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ABSTRACT

Graph structure is a very powerful tool to model system and represent their actual shape. For instance,
modelling an infrastructure or social network naturally leads to graph. Yet, graphs can be very different
from one another as they do not share the same properties (size, connectivity, communities, etc.) and
building a system able to manage graphs should take into account this diversity. A big challenge
concerning graph management is to design a system providing a scalable persistent storage and allowing
efficient browsing. Mainly to study social graphs, the most recent developments in graph partitioning
research often consider scale-free graphs. As we are interested in modelling connected objects and their
context, we focus on partitioning geometric graphs. Consequently our strategy differs, we consider
geometry as our main partitioning tool. In fact, we rely on Inverse Space-filling Partitioning, a technique
which relies on a space filling curve to partition a graph and was previously applied to graphs essentially
generated from Meshes. Furthermore, we extend Inverse Space-Filling Partitioning toward a new target
we define as Wide Area Graphs. We provide an extended comparison with two state-of-the-art graph
partitioning streaming strategies, namely LDG and FENNEL. We also propose customized metrics to
better understand and identify the use cases for which the ISP partitioning solution is best suited.
Experimentations show that in favourable contexts, edge-cuts can be drastically reduced, going from more
34% using FENNEL to less than 1% using ISP.

KEYWORDS

Graph, Partitioning, Graph partitioning, Geometric partitioning, Spatial, Geography, Geometric, Space
Filling Curve, SFC, ISP
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ABSTRACT

The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma
drainage device failure based on demographic information and preoperative measurements. The medical
records of 165 patients were used. Potential predictors included the patients' race, age, sex, preoperative
intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number
and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg,
reduction in intraocular pressure less than 20% from baseline, or need for reoperation unrelated to normal
implant maintenance. Five classifiers were compared: logistic regression, artificial neural network,
random forest, decision tree, and support vector machine. Recursive feature elimination was used to
shrink the number of predictors and grid search was used to choose hyperparameters. To prevent leakage,
nested cross-validation was used throughout. With a small amount of data, the best classfier was logistic
regression, but with more data, the best classifier was the random forest.
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PETROCHEMICAL PRODUCTION BIG DATA AND ITS FOUR TYPICAL
APPLICATION PARADIGMS
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ABSTRACT

In recent years, the big data has attracted more and more attention. It can bring us more information and
broader perspective to analyse and deal with problems than the conventional situation. However, so far,
there is no widely acceptable and measurable definition for the term “big data”. For example, what
significant features a data set needs to have can be called big data, and how large a data set is can be
called big data, and so on. Although the "5V" description widely used in textbooks has been tried to solve
the above problems in many big data literatures, "5V" still has significant shortcomings and limitations,
and is not suitable for completely describing big data problems in practical fields such as industrial
production. Therefore, this paper creatively puts forward the new concept of data cloud and the data
cloud-based "3M" descriptive definition of big data, which refers to a wide range of data sources
(Multisource), ultra-high dimensions (Multi-dimensional) and a long enough time span (Multi-
spatiotemporal). Based on the 3M description of big data, this paper sets up four typical application
paradigms for the production big data, analyses the typical application of four paradigms of big data, and
lays the foundation for applications of big data from petrochemical industry.

KEYWORDS

Big Data, Paradigms, Industrial Big Data.
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ABSTRACT

This paper focuses on a referring expression generation (REG) task in which the aim is to pick out an
object in a complex visual scene. One common theoretical approach to this problem is to model the task
as a two-agent cooperative scheme in which a ‘speaker’ agent would generate the expression that best
describes a targeted area and a ‘listener’ agent would identify the target. Several recent REG systems
have used deep learning approaches to represent the speaker/listener agents. The Rational Speech Act
framework (RSA), a Bayesian approach to pragmatics that can predict human linguistic behavior quite
accurately, has been shown to generate high quality and explainable expressions on toy datasets involving
simple visual scenes. Its application to large scale problems, however, remains largely unexplored. This
paper applies a combination of the probabilistic RSA framework and deep learning approaches to larger
datasets involving complex visual scenes in a multi-step process with the aim of generating better-
explained expressions. We carry out experiments on the RefCOCO and RefCOCO+ datasets and compare
our approach with other endto-end deep learning approaches as well as a variation of RSA to highlight
our key contribution. Experimental results show that while achieving lower accuracy than SOTA deep
learning methods, our approach outperforms similar RSA approach in human comprehension and has an
advantage over end-to-end deep learning under limited data scenario. Lastly, we provide a detailed
analysis on the expression generation process with concrete examples, thus providing a systematic view
on error types and deficiencies in the generation process and identifying possible areas for future
improvements.
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