November 2025: Top 10 Cited Articles in Software Engineering & Applications

International Journal of Software
Engineering & Applications (IJSEA)** ERA
Indexed **

ISSN: 0975 - 9018 (Online); 0976-2221 (Print)

https://www.airccse.org/journal/ijsea/ijsea.html

Citations, h-index, i10-index

Citations 5805 h-index 36 i10-index 127

Intelligent Knowledge Database (IKD) Tool for Formal Methods

Manju Nanda J.Jayanthi and Madhan.V

National Aerospace Laboratories, Bangalore, India

ABSTRACT

This paper discusses the Intelligent Knowledge Database (IKD) tool generated for formal methods. The knowledge database provides the information regarding the existing formal methods in the area of academia, industry and R&D sectors. The tool provides complete information about the formal methods adopted in the conventional or model-based approach, in the various phases of the software development life cycle process, list of tools using formal techniques with their version and published literature supporting formal methods. This knowledge-database serves as a live encyclopedia which will enable the engineers and researchers interested in the field of formal methods. The database is intelligent because it provides the user with the flexibility of searching the formal method related information using keyword similar to the search engine. This is a unique tool for formal methods encompassing most of the published literature with intelligent search options.

KEYWORDS

Formal methods, Information retrieval, Verification and Validation, SDLC Phases, Encyclopedia, Database, Live database tool.

For More Details: https://airccse.org/journal/ijsea/papers/3612ijsea09.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol3.html

- [1] JAMES ALLAN, "Information Retrieval Overview"
- [2] ANDY MACFARLANE, "Overview of Open Source and Information Retrieval"
- [3] Monika Henzinger, "Tutorial Web Information Retrieval"
- [4] Dragos and Anton Manolescu, "Feature Extraction—A Pattern for Information Retrieval"
- [5] C.J. "Keith" van Rijsbergen, "Introduction to Information Retrieval"
- [6] Morten Hertzum, "A Comparison of Three Data Models for TextStorage and Retrieval Systems"
- [7] "Comparison of software metrics tools" by Rüdiger Lincke, Jonas Lundberg and Welf Löwe. Software Technology Group, School of Mathematics and Systems Engineering, Växjö University, Sweden.
- [8] "Formal Methods and their role in certification of safety critical systems" by John Rushby.
- [9] CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, Simulink®, and Stateflow® Version 2.1 Math Works Automotive Advisory Board (MAAB) July 27th, 2007.
- [10] "Experiences with formal engineering: Model based specification, implementation and testing of a software bus at Neopost" by M. Sijtema, M.I.A. Stoelinga, A. Belinfante and L.Marinelli: University of Twente, Netherlands and Neopost, Austin, Texas
- [11] "Developing Safety-Critical Systems: The Role of Formal Methods and Tools" by Constance Heitmeyer, Center for High Assurance Computer Systems, Washington
- [12] "Model Based Design for DO178B with qualified tools" by Tom Errkinen and Bill Potter; MathWorks Inc.
- [13] "Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability and Robustness for maintaining Systems Lifecycle value" by Adam M Ross, Donna H Rhodes and Daniel E Hastings (Massachusetts Institute of technology, Cambridge)
- [14] "Examination of SCADE in Systems Engineering" by Lars Sarbaek and Martin Kjeldsen. (Engineering College of Aarhus; Denmark).
- [15] "Combining SysML and formal models for safety requirements verification" by Jean-François Pétin, Dominique Evrot, Gérard Morel, Pascal Lamy.
- [16] Validation and verification of next generation air transportation systems and technologies" by Ronald L Fulton
- [17] "A Report on Formal methods encyclopedia" Manju nanda, jayanthi and chinmayi s.jamadhagni

TECHRISK - A DECISIONAL FRAMEWORK TO MEASURE TECHNICAL DIMENSIONS OF LEGACY APPLICATION FOR REJUVENATION THROUGH REENGINEERING

Anand Rajavat¹ and Vrinda Tokekar²
¹Shri Vaishnav Institute of Technology and Science, India
²Institute of Engineering and Technology (DAVV), India

ABSTRACT

Competitive business environment wants to modernize existing legacy system in to self-adaptive ones. A variety of options are available to renovate legacy system in to more contemporary system. Recently the phenomenon of "software reengineering", a methodology to allow old ways of thinking to be replaced with new, fresh approaches to increase productivity and quality of system, has been reported. However evolving legacy system through reengineering is a risky and error – prone task due to extensive changes it requires in the majority of cases. Therefore cost effective reengineering requires identifying and measuring impact of system, managerial and technical risk. We present a technical domain framework TechRisk to identify and measure quality and functional dimensions of legacy system. The objective is to identify those risk factors of technical domain which are critical to the success of reengineering. Proposed decision driven framework TechRisk provide support to identify and eliminate the highest impact risks in the software reengineering process and help to create a successful reengineering solution.

KEYWORDS

TechRisk, Reengineering, Risk engineering, Legacy system, Software quality, Domain

For More Details: https://www.airccse.org/journal/ijsea/papers/0711ijsea09.pdf
Volume Link: https://www.airccse.org/journal/ijsea/vol2.html

- [1] Alessandro Bianchi, Danilo Caivano, Vittorio Marengo, Giuseppe Visaggio, "IterativeReengineering of Legacy Systems", Ieee Transactions On Software Engineering, Vol. 29, No. 3, March 2003.
- [2] Alessandro Bianchi, Danilo Caivano, Vittorio Marengo, Giuseppe Visaggio," Iterative Reengineering of Legacy Functions", 17th IEEE International Conference on Software Maintenance (ICSM'01), Florence, Italy, ISBN: 0-7695-1189-9, November 07-November 09.
- [3] Anand rajavat, Vrinda Tokaker," MngRisk A Decisional Framework to Measure Managerial Dimensions of Legacy Application for Rejuvenation through Reengineering", International jurnal of computer application 2011 by IJCA Journal, Number 2 Article 4, DOI 10.5120/1985-2674, 2011.
- [4] Software Maintenance and Reengineering, 1998,ISBN: 0-8186-8421-6, Digital Object Identifier: 10.1109/CSMR.1998.665778
- [5] Harry M. Sneed, "Risks Involved in Reengineering Projects," in WCRE: Proceedings of the 6th IEEE Conference on Reverse Engineering, PP.204, 1999.
- [6] Eric K. Clemons Michael C. Row Matt E. Thatcher, "An Integrative Framework for Identifying and Managing Risks Associated With Large Scale Reengineering Efforts," Proceedings of the 28th Annual Hawaii International Conference on System Sciences, PP.960-969, 1995.
- [7] Cristiane S. Ramos, Káthia M. Oliveira, Nicolas Anquetil," Legacy Software Evaluation Model for Outsourced Maintainer", published in CSMR '04 Proceedings of the Eighth Euromicro Working Conference on Software Maintenance and Reengineering (CSMR'04), IEEE Computer Society Washington, DC, USA ©2004 table of contents ISBN:0-7695-2107-X
- [8] Ransom, J., Somerville, I., Warren, I.," A method for assessing legacy systems for evolution ", in Proceedings of the Second Euromicro Conference on Software Maintenance and Reengineering, 1998, ISBN: 0-8186-8421-6, INSPEC Accession Number: 5884288,PP 128 134.
- [9] Anand rajavat, Vrinda Tokaker," MngRisk A Decisional Framework to Measure Managerial Dimensions of Legacy Application for Rejuvenation through Reengineering", International jurnal of computer application 2011 by IJCA Journal, Number 2 Article 4, DOI 10.5120/1985-2674, 2011.
- [10] Anand Rajavat, Vrinda Tokekar, "ReeRisk –A Decisional Risk Engineering Framework for Legacy System Rejuvenation through Reengineering", Published in Proceedings of Second International Conference on Recent Trends in Information, Telecommunication and Computing ITC 2011 by Springer LNCS-CCIS, March 10-11, 2011 in Bengaluru, India, CNC 2011, CCIS 142, pp. 152 158, 2011, © Springer-Verlag Berlin Heidelberg 2011

INTEGRATING SOFTWARE REPOSITORY MINING: A DECISION SUPPORT CENTERED APPROACH

Luiz Dourado Dias Junior and Eloi Favero Department of Electric Engineering, UFPA, Belem, PA

ABSTRACT

Mining software repositories (MSR) research had significantly contributed to software engineering. However, MSR results integration across repositories is a recent concern that is getting more attention from researchers each day. Some noticeable research in this sense is related to the approximation between MSR and semantic web, specially linked data approaches which makes it possible to integrate repositories and mined results. Manifested that way, we believe that current research is not fully addressing the practical integration of MSR results, specially, in software engineering due to not considering that these results needs to be integrated to the tools as assistance to activity performers, as a kind of decision making support. Based on this statement this research describes an approach, named Sambasore, which is concerned with MSR results inter-repository ntegration and also to decision making support processes, based on tool assistance modelling. To show its feasibility we describe the main concepts, some related works and also a proof of concept experiment applied to a software process modelling tool named Spider PM.

KEYWORDS

Network Protocols, Wireless Network, Mobile Network, Virus, Worms & Trojon

For More Details: https://airccse.org/journal/ijsea/papers/3612ijsea05.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol3.html

- [1] Hassan, A.E., (2008) "The road ahead for Mining Software Repositories," Frontiers of Software Maintenance, pp.48-57.
- [2] Holmes, R. & Begel, A., (2008) "Deep intellisense: a tool for rehydrating evaporated information", In Proceedings of the 2008 international working conference on Mining software repositories (MSR '08). ACM, New York, NY, USA, 23-26.
- [3] Layman, L. & Nagappan, N. & Guckenheimer, S. & Beehler, J. & Begel, A., (2008) "Mining software effort data: preliminary analysis of visual studio team system data", In Proceedings of the 2008 international working conference on Mining software repositories (MSR '08). ACM, New York, NY, USA, 23-26.
- [4] Ratzinger, J. & Sigmund, T. & Gall, C. H., (2008) "On the relation of refactorings and software defect prediction", In Proceedings of the 2008 international working conference on Mining software repositories (MSR '08). ACM, New York, NY, USA, 35-38.
- [5] Anbalagan, P. & Vouk, M., (2009) "On mining data across software repositories", In Proceedings of the 2009 6th IEEE International Working Conference on Mining Software Repositories (MSR '09). IEEE Computer Society, Washington, DC, USA, 171-174.
- [6] Keivanloo, I. & Forbes, C. & Hmood, A. & Erfani, M. & Neal, C. & Peristerakis, G. & Rilling, J., (2012) "A Linked Data platform for mining software repositories", Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on , vol., no., pp.32-35, 2-3 June 2012.
- [7] Fayyad, U. & Piatetsky-Shapiro, G. & Smyth, P., (1996) "The KDD process for extracting useful knowledge from volumes of data", Commun. ACM 39, 11 (November 1996), 27-34.
- [8] Cimiano, P. (2010) "Ontology Learning and population from text", Springer, 2010.
- [9] Reis, C. L. (2003) "Uma Abordagem Flexível para Execução de Processos de Software Evolutivos", Tese de Doutorado PPGC UFRGS, Março 2003.
- [10] "Spem 2.0 Specification", http://www.omg.org/spec/SPEM/2.0/.Last visited Aug, 2012.
- [11] "Spider PM specification", http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf. Last visited Aug, 2012.
- [12] "RUP 2002", http://www.wthreex.com/rup/portugues/index.htm .Last visited Aug, 2012.
- [13] "Protége Editor", http://protege.stanford.edu/.Last visited Aug, 2012.
- [14] "Json Format", http://www.json.org. Last visited Aug, 2012.
- [15] "Spider Project", http://www.spider.ufpa.br/index.php?id=sobre.Last visited Aug, 2012.
- [16] "Spider PM specification", http://www.spider.ufpa.br/projetos/spider_pm/Spider-PM.pdf. Last visited Aug, 2012.
- [17] Agrawal, R. & Imieli, T. & Swami, A., (1993) "Mining association rules between sets of items in large databases", In Proceedings of the 1993 ACM SIGMOD international conference on Management of data (SIGMOD '93), Peter Buneman and Sushil Jajodia (Eds.). ACM, New York, NY, USA, 207-216.

A METHODOLOGY TO EVALUATE OBJECT ORIENTED SOFTWARE SYSTEMS USING CHANGE REQUIREMENT TRACEABILITY BASED ON IMPACT ANALYSIS

Sunil T. D. and M. Z. Kurian Sri Siddhartha Institute of Technology, India

ABSTRACT

It is a well known fact that software maintenance plays a major role and finds importance in software development life cycle. As object-oriented programming has become the standard, it is very important to understand the problems of maintaining object-oriented software systems. This paper aims at evaluating object-oriented software system through change requirement traceability — based impact analysis methodology for non functional requirements using functional requirements. The major issues have been related to change impact algorithms and inheritance of functionality.

KEYWORDS

Change Requirement Traceability, Impact Analysis, Object-Oriented Software Systems, Software Maintenance, Change Impact algorithms, inheritance of functionality.

For More Details: https://airccse.org/journal/ijsea/papers/5314ijsea04.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol5.html

- [1] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Fundamentals of Software Engineering, Prentice Hall Publishing, (1991).
- [2] Chandra Shrivastava, D. L. Carver, "Using Low-Level Software Architecture for Software Maintenance of Object-Oriented Systems", Proceedings of the 1995 Software Engineering Forum, Boca Raton, FL, November pp. 31-40, (1995).
- [3] Chen. X., Tsai. W., Hunag. H., Poonawala. M., Rayadurgam. S., Wang. Y., Omega-an Integrated Environment for C++ Program Maintenance, Proceedings of the International conference on software Maintenance, pp.114-123, (1996).
- [4] Li.,L.,Offutt,A.J., Algorithmic Analysis of the Impact of Changes to Object-oriented Software, Proceedings of the International Conference on Software Maintenance, pp. 171-184, (1996).
- [5] Gallangher, K., Visual Impact Analysis, Proceedings of the International Conference on Software Maintenance, pp. 52-58, (1996).
- [6] Hutchins, M., Gallagher, K., Improving Visual Impact Analysis, Proceedings of the International Conference on Software Maintenance, pp.294-301, (1996).
- [7] Bohner.S.A., Software change impacts—an evolving perspective, Proceedings of the International Conference on Software maintenance, pp 263 272, (2002).
- [8] Pressman. A Dynamic Analysis Approach Concept Location. Technical report of Software Engineering,
- [9] Suhaimi Bin Ibrahim A Document-Based Software Traceability to Support Change Impact Analysis of Object-Oriented Software, University Teknologi Malaysia, Thesis, pp. 45-56, (2006).
- [10] M.Z.Kurian and A S Manjunath Requirement traceability and impact analysis methodology to evaluate software requirements changes, National Conference on Trends in Advanced Computing, at DMCE, Airoli, Navi Mumbai, 28-29, (2007).
- [11] Ali R. Sharafat and Ladan Tahvildari, Change Prediction in Object- Oriented Software Systems: A Probabilistic Approach, Journal of Software, Vol. 3, No. 5, pp.10-38, (2008).
- [12] Peter Zielczynski, IBM, Requirements Manangement Using IBM Rational Requisite Pro, (2013).
- [13] Francisco A C Pincher, Requirement traceability Technical Report, University of Brasilia, (2000)
- [14] Gotel O.C.Z and Finkelstein ACW. An analysis of the requirements traceability problem. Proceedings of ICRE94, 1st Internation conference on requirements engineering, 1994, Colorado springs Co, IEEE CS Press (1994).
- [15] Haumer P., Pohl K., Weidenhaupt K and Jarke M. Improving reviews by extended traceability. Proceedings of 32nd Hawaii International Conference on system sciences volume 3; January 05-08; Maui, Hawaii, (1999).
- [16] Smith t,T J READS: A requirements engineering tool. Proceedings of RE'93, International Symposium on Requirements Engineering; January 4-6; san Diego,C.A. Los Alamitos,CA,IEEE Computer Society,(1993).
- [17] Yu W.D. Verifying software requirements a requirement tracing methodology and its software tool RADIX, IEEE Journal on Selected Areas of Communication;12(2):234-240, (1994)
- [18] Sarah Maadawy and Akram Salah, Measuring Change Complexity from Requirements: A proposed methodology, IMACST Volume 3, Number, February (2012).

AUTHORS

Asst. Prof. **Sunil T D** received Bachelor Degree from Bangalore University in Electronics and Post graduate degree in Electronics from Visvesvaraya Technological University at BMSCE, Bangalore and Pursuing Ph.D degree in Software Engineering from VTU, Belgaum, Karnataka, India. Having 12 Years of Teaching experience in the field of Electronics & Communication Engineering. Published several papers in peer reviewed international journals, and several conference papers.

Dr M.Z.Kurian received his Bachelor Degree from Bangalore University and Post graduate degree in Industrial Electronics from Mysore University, and Ph.D degree in Software Engineering from Dr.MGR University, Chennai, Tamil Nadu, India. He has more than 30 Years of Teaching experience in the field of Electronics & Communication Engineering. Published several papers in peer reviewed international journals including IEEE, and several conference papers.

A Literature Survey of Cognitive Complexity Metrics for Statechart Diagrams

Ann Wambui King'ori^{1, 2}, Geoffrey Muchiri Muketha¹ and Elyjoy Muthoni Micheni³

¹Murang' a University of Technology, Kenya

²Nkabune Technical Training Institute, Kenya

³The Technical University of Kenya, Kenya

ABSTRACT

Statechart diagrams have inherent complexity which keeps increasing every time the diagrams are modified. This complexity poses problems in comprehending statechart diagrams. The study of cognitive complexity has over the years provided valuable information for the design of improved software systems. Researchers have proposed numerous metrics that have been used to measure and therefore control the complexity of software. However, there is inadequate literature related to cognitive complexity metrics that can apply to measure statechart diagrams. In this study, a literature survey of statechart diagrams is conducted to investigate if there are any gaps in the literature. Initially, a description of UML and statechart diagrams is presented, followed by the complexities associated with statechart diagrams and finally an analysis of existing cognitive complexity metrics and metrics related to statechart diagrams. Findings indicate that metrics that employ cognitive weights to measure statechart diagrams are lacking.

KEYWORDS

UML, Statechart diagrams, Software metrics, Cognitive complexity metrics, statechart complexity metrics

For More Details: https://aircconline.com/ijsea/V10N4/10419ijsea03.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol10.html

- [1] Anwer, S., & El-Attar, M. (2014). An evaluation of the statechart diagrams visual syntax. In 2014 International Conference on Information Science and Applications (ICISA) (pp. 1-4). IEEE.
- [2] Briand, L. C., Bunse, C. & Daly, J. W. (2001). A controlled Experiment for Evaluating Quality Guidelines on Maintainability of Object Oriented Design. IEEE Transactions on Software Eng.2 (6): 513–530.
- [3] Cruz-Lemus, J. A., Genero, M., Manso, M. E., Morasca, S., & Piattini, M. (2009). Assessing the understandability of UML statechart diagrams with composite states—A family of empirical studies. Empirical Software Engineering, 14(6), 685-719.
- [4] Daljeet, S., & Lavleen, K. (2012). Analyzing the Cohesion and Coupling of Statechart Diagrams using Program Slicing Techniques. International Journal of Computer Science and Technology, 3, 69-72.
- [5] Dori, D., Wengrowicz, N., & Dori, Y. J. (2014). A comparative study of languages for model-based systems-of-systems engineering (MBSSE). In 2014 World Automation Congress (WAC) (pp. 790-796). IEEE.
- [6] Fahad A. (2012). State Based Static and Dynamic Formal Analysis of UML State Diagrams. Journal of Software Engineering and Applications, 5, 483-491.
- [7] Fitsilis, P., Gerogiannis, V. C., & Anthopoulos, L. (2013). Role of Unified Modelling Language in Software Development in Greece-results from an exploratory study. IET Software, 8(4), pp. 143-153.
- [8] Genero, M., Miranda, D., & Piattini, M. (2003). Defining Metrics for UML Statechart Diagrams in a Methodological way. In International Conference on Conceptual Modelling, (pp.118-128).
- [9] IEEE Standard 1061 (1992). Standard for a Software Quality Metrics Methodology. Institute of Electrical and Electronics Engineers. New York.
- [10] Jakhar, A.K & Rajnish, K. (2014). A new cognitive approach to measure the complexity of software's. International Journal of Software Engineering & its Applications, vol. 8, no. 7, pp. 185-198.
- [11] Jakhar, A. K., & Rajnish, K. (2015). Measurement of complexity and comprehension of a program through a cognitive approach. International Journal of Engineering-Transactions B: Applications, 28(11), 1579-1588.
- [12] Jamal, M., & Zafar, N. A. (2016). Formalizing structural semantics of UML 2.5 activity diagram in Z Notation. In 2016 International Conference on Open Source Systems & Technologies (ICOSST) (pp. 66-71). IEEE.
- [13] Jama, O.M., (2009). A Case Study on Evaluating UML Modelling in Software Testing (Master's thesis, University of OSLO).
- [14] Kumar, A., & Khalsa, S. K. (2012). Determine cohesion and coupling for class diagram through slicing techniques. IJACE, 4(1), 19-24.
- [15] Kushwaha, D. S. & Misra, A. K., (2006). Robustness Analysis of Cognitive Information Complexity Measure using Weyuker Properties. ACM SIGSOFT Software Engineer Notes, 31(1), 1–6.
- [16] Maheswaran, K., & Aloysius, A. (2017). An Analysis of Object Oriented Complexity Metrics. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2, 768-775.
- [17] Maylawati, D. S., Darmalaksana, W., & Ramdhani, M. A. (2018). Systematic design of expert system using unified modelling language. In IOP Conference Series: Materials Science and Engineering (Vol. 288, No. 1, p. 012047).
- [18] Miles, R. & Hamilton, K. (2006). Learning UML 2.0. "O'Reilly Media, Inc.".
- [19] Misra, S. (2004). Evaluating cognitive complexity measure with Weyuker's properties. 3rd IEEE International Conference on Cognitive Informatics (ICCI'04): 103-108.
- [20] Misra, S. (2006). Modified cognitive complexity measure.LNCS 4263: 1050-1059.
- [21] Misra, S. (2007a). Cognitive program complexity measure. 6th IEEE International Conference on Cognitive Informatics: 120-125.
- [22] Misra, S. (2011). Cognitive complexity measures: An analysis. Modern Software Engineering Concepts and Practices: Advanced Approaches, (pp. 263-279), IGI Global.

- [23] Misra, S., Adewumi, A., Fernandez-Sanz, L., & Damasevicius, R. (2018). A Suite of Object Oriented Cognitive Complexity Metrics. IEEE Access, 6, 8782–8796.
- [24] Muketha, G.M. (2011). Size and complexity metrics as indicators of maintainability of business process execution language process models (Doctoral dissertation, Universiti Putra Malaysia).
- [25] OMER, O. S. D., & Sahraoui, A. E. (2017). From Requirements Engineering to UML using Natural Language Processing—Survey Study.
- [26] Rambaugh, J., Jacobsen, I. & Booch, G. (2005). The Unified Modelling Language Reference Manual, second Edition. Pearson Higher Education.
- [27] Siau, K., & Loo, P.P. (2006). Identifying difficulties in learning UML. Information Systems Management, 23(3), 43-51.
- [28] Sikka, P., & Kaur, K. (2016). Mingling of Program Slicing to Designing Phase. Indian Journal of Science and Technology, 9(44).
- [29] UML, O. (2012a). Information technology-Object Management Group Unified Modelling Language (OMG UML), Infrastructure.
- [30] Wang, Y. & Shao J., (2003). A new Measure of Software Complexity Based on Cognitive Weights. Journal of Electrical and Computer Engineering, 28(2), 69-74.
- [31] Wang, Y. (2004). On the Cognitive Informatics Foundations of Software Engineering. In Proceedings of the Third IEEE International Conference on Cognitive Informatics, pp. 22-31.
- [32] Zafar, N. A. (2013). Model analysis of equivalence classes in UML events relations. Journal of Software Engineering and Applications, 6(12), 653.

AUTHORS

Ann Wambui King'ori is an ICT Assistant Lecturer at the Department of Information Communication Technology at Nkabune Technical Training Institute, Kenya. She earned her Bachelor of Technology Education (Computer Studies) from the University of Eldoret, Kenya in 2014. She is currently pursuing her MSc. in Information Technology at Murang'a University of Technology, Kenya. Her research interests include software metrics, software quality, and business intelligence.

Geoffrey Muchiri Muketha is an Associate Professor and Dean of the School of Computing and Information Technology, Murang' a University of Technology, Kenya. He received his BSc. in Information Science from Moi University in 1995, his MSc. in Computer Science from Periyar University, India in 2004, and his Ph.D. in Software Engineering from Universiti Putra Malaysia in 2011. He has wide experience in teaching and supervision of postgraduate students. His research interests include software and business process metrics, software quality, verification and validation, empirical methods

in software engineering, and component-based software engineering. He is a member of the International Association of Engineers (IAENG).

Elyjoy Muthoni Micheni is a Senior Lecturer in Information Systems in the Department of Management Science and Technology at The Technical University of Kenya. She holds a Ph.D. (Information Technology) from Masinde Muliro University of Science and Technology, Master of Science (Computer Based Information Systems) from Sunderland University, (UK); achelor of Education from Kenyatta University; Post Graduate Diploma in Project Management from Kenya Institute of Management. She has taught Management Information System courses for many years at the University level. She has presented papers in scientific conferences and has many publications in refereed journals. She has

also co-authored a book for Middle-level colleges entitled: "Computerized Document Processing". Her career objective is to tap computer-based knowledge as a tool to advance business activities, promote research in ICT and enhance quality service.

EA-MDA Model to Resolve is Characteristic Problems in Educational Institutions

Mardiana¹ and Keijiro Araki²

1,2Dept. of Advanced Information Technology, Kyushu University, Fukuoka, Japan

1Dept. of Electrical Engineering, University of Lampung, Indonesia

ABSTRACT

Higher education institutions require a proper standard and model that can be implemented to enhance alignment between business strategy and existing information technologies. Developing the required model is a complex task. A combination of the EA, MDA and SOA concepts can be one of the solutions to overcome the complexity of building a specific information technology architecture for higher education institutions. EA allows for a comprehensive understanding of the institution's main business process while defining the information system that will assist in optimizing the business process. EA essentially focuses on strategy and integration. MDA relies on models as its main element and places focuses on efficiency and quality. SOA on the other hand uses services as its principal element and focuses on flexibility and reuse. This paper seeks to formulate an information technology architecture that can provide clear guidelines on inputs and outputs for EA development activities within a given higher education institution. This proposed model specifically emphasises on WIS development in order to ensure that WIS in higher education institutions has a coherent planning, implementation and control process in place consistent with the enterprise's business strategy. The model will then be applied to support WIS development and implementation at University of Lampung (Unila) as the case study

KEYWORDS

Enterprise Architecture, Web Information system, Higher Education, MDA, SOA

For More Details: https://airccse.org/journal/ijsea/papers/4313ijsea01.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol4.html

- [1] Osvalds, Gundars, (2001) Definition of Enterprise Architecture Centric Models for The Systems Engineers, TASC Inc.
- [2] T. Erl, (2005) Service-Oriented Architecture Concepts, Technology, and Design, Prentice Hall.
- [3] OMG, "OMG Model Driven Architecture," Available: http://www.omg.org/mda.
- [4] Republic of Indonesia, (2005) "Government regulations (PP) No.19 of 2005 of national standard of education", Jakarta, Indonesia.
- [5] Shah, H. & Kourdi, M.E (2007) "Frameworks for Enterprise Architecture," IT Professional, vol.9, no.5, pp. 36-41
- [6] Ostadzadeh, S. S, Aliee, Fereidoon S., Ostadzadeh, S. A., (2008), "An MDA-Based Generic Framework to Address Various Aspects of Enterprise Architecture", Advances in Computer and Information Sciences and Engineering, pp. 455–460.
- [7] Wegmann, A. and Preiss, O., (2003) "MDA in Enterprise Architecture? The Living System Theory to the Rescue", Proceedings of the 7th IEEE international Enterprise Distributed Object Computing Conference (EDOC'03), pp. 2-13
- [8] Fatolahi, Ali, S. S, Stéphane, C. L, Timothy (2007) "Enterprise Architecture Using the Zachman Framework: A Model Driven Approach", Proceedings of the IRMA 2007 International Conference, pp 65-69.
- [9] Cáceres, P., Marcos, E., Vela , B., (2003), "A MDA-Based Approach for Web Information System Development", Workshop in Software Model Engineering (WISME'03)
- [10] Castro, V., Marcos, E., Cáceres, P., (2004) "A User Service Oriented Method to Model Web Information Systems", WISE 2004, LNCS 3306, pp. 41–52
- [11] Meliá, S., & Gómez,J.,(2005)" Applying Transformations to Model Driven Development of Web Applications ",ER Workshops 2005, LNCS 3770, pp. 63-73
- [12] Castro, V. De., Marcos, E., and Vara, J.M., (2010), "Applying CIM-to-PIM model transformation for the service-oriented development of information systems," Journal Information and Software Technology, pp. 87-105
- [13] Carstensen, P. H., Vogelsang, L, (2001), "Design of Web-based information systems—new challenges for systems development?" Ninth European conference on information systems (ECIS), pp 536–547
- [14] National Accreditation Board for Higher Education (Badan Akreditasi Nasional Perguruan Tinggi, BAN-PT) Ministry of Education Indonesia, (2008) Book IIIA: Undergraduate program study accreditation, Jakarta, Indonesia, BAN PT.
- [15] Directorate General of Higher Education (DGHE), "Dissemination of national higher education database system", Ministry of Education Indonesia, (2010), Jakarta, Indonesia.
- [16] Sowa, J. F., Zachman, J.A. (1992) "Extending and formalizing the framework for information systems architecture". IBM Systems Journal 31, No. 3, 590-616.
- [17] The Open Group, TOGAF Version 9.1, http://www.opengroup.org/togaf/
- [18] Leist,S., & Zellner,G.,(2006), "Evaluation of current architecture frameworks". In Proceedings of the 2006 ACM symposium on Applied computing
- [19] Frankel, David S.,(2003) The Model Driven Architecture: Applying MDA to Enterprise Computing, OMG Press.
- [20] Open Group, (2009) The Open Group Architecture Framework: Architecture Development Method.
- [21] Rivett, P., Spencer, J., Waskiewicz, F., (2005) TOGAF/MDA Mapping, White Paper, The Open Group
- [22] Directorate General of Higher Education (DGHE), (2009), EPSBED, http://evaluasi.or.id/
- [23] The OMG Group, (2008) Business Process Modelling Notation, Version 1.1.
- [24] Booch, G., Rumbaugh, J., Jacobson, I., (1999) "The Unified Modeling Language: A User Guide", Addison Wesley.
- [25] Main Acceleo Site, "Acceleo MDA Generator," http://www.acceleo.org/.
- [26] Main PHP Site "PHP," http://www.php.net/.
- [27] Main CodeIgniter Site, "CodeIgniter," http://codeigniter.com/.
- [28] Chuttur, M.Y., (2009), "Overview of the Technology Acceptance Model: Origins, Developments and Future Directions", Indiana University, USA, Sprouts: Working Papers on Information Systems
- [29] Gable, G., Sedera, D., Chan, T. (2008), "Re-conceptualizing Information System Success: The ISImpact Measurement Model", Journal of the Association for Information Systems, 9 (7), pp. 377-408.
- [30] Mardiana & Araki, K., (2012) "SIMPEL: An innovative web application interface supporting online course management system," in Information Technology Based Higher Education and Training

AUTHORS

Mardiana She received B.S. degree in Electrical Engineering at the National Institute of Technology, Indonesia and the M.S degree in Electrical Engineering at the Bandung Institute of Technology, Indonesia, in 1997 and 2002 respectively. Since 1998 until now, she is working as a lecturer at Department of Electrical Engineering, University of Lampung, Indonesia. She is currently a PhD student in Graduate School of Information Science and Electrical Engineering, Department of Advanced Information Technology, Kyushu University, Japan.

Keijiro Araki He received his B.S., M.E. and D.E. degree in Computer Science and Communication Engineering from Kyushu University, Japan, in 1976, 1978 and 1982 respectively. Since 1984 till 1993 he was an Associate Professor in the same department. From 1993 to 1996 he was working as a Professor at the Graduate School of Information Science, Nara Institute of Science and Technology, Japan. Now, he is a Professor at the Graduate School of Information Science and Electrical Engineering in Kyushu University since 1996.

LEAN THINKING IN SOFTWARE ENGINEERING: A SYSTEMATIC REVIEW

Fernando Sambinelli¹ and Marcos Augusto Francisco Borges²

¹Federal Institute of Education, Science and Technology of São Paulo, Hortolândia, Brazil

²School of Technology, University of Campinas, Limeira, Brazil

ABSTRACT

The field of Software Engineering has suffered considerable transformation in the last decades due to the influence of the philosophy of Lean Thinking. The purpose of this systematic review is to identify practices and approaches proposed by researchers in this area in the last 5 years, who have worked under the influence of this thinking. The search strategy brought together 549 studies, 80 of which were classified as relevant for synthesis in this review. Seventeen tools of Lean Thinking adapted to Software Engineering were catalogued, as well as 35 practices created for the development of software that has been influenced by this philosophy. The study provides a roadmap of results with the current state of the art and the identification of gaps pointing to opportunities for further research.

KEYWORDS

Lean Thinking, Lean IT, Agile, Software Engineering, Software Development, Systematic Review

For More Details: https://aircconline.com/ijsea/V8N3/8317ijsea02.pdf
Volume Link: https://www.airccse.org/journal/ijsea/vol8.html

- [1] K. B. Stone, "Four decades of lean: a systematic literature review," Int. J. Lean Six Sigma, vol. 3, no. 2, pp. 112–132, 2012.
- [2] G. Narayanamurthy and A. Gurumurthy, "Leanness assessment: a literature review," Int. J. Oper. Prod. Manag., vol. 36, no. 10, pp. 1115–1160, 2016.
- [3] J. P. Womack, D. T. Jones, and D. Roos, "The Machine that Changed the World: The Story of Lean Production," World. pp. 1–11, 1990.
- [4] J. P. Womack and D. T. Jones, Lean Thinking, vol. 5. 1996.
- [5] B. Fitzgerald and K. J. Stol, "Continuous software engineering: A roadmap and agenda," J. Syst. Softw., vol. 123, pp. 176–189, 2017.
- [6] M. Poppendieck and M. A. Cusumano, "Lean software development: A tutorial," IEEE Softw., vol. 29, no. 5, pp. 26–32, 2012.
- [7] S. C. Bell and M. a Orzen, Enabling and Sustaining Your Lean Transformation. 2011.
- [8] VersionOne, "10th Annual State of Agile Report," Atlanta, United States, 2015.
- [9] G. G. Claps, R. Berntsson Svensson, and A. Aurum, "On the journey to continuous deployment: Technical and social challenges along the way," in Information and Software Technology, 2015, vol. 57, no. 1, pp. 21–31.
- [10] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, "Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA*," Epidemiol. Serv. Saúde, vol. 24, no. 2, pp. 335–342, 2015.
- [11] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U. Conte, and G. H. Travassos, "Scientific research ontology to support systematic review in software engineering," Adv. Eng. Informatics, vol. 21, no. 2, pp. 133–151, 2007.
- [12] T. Dingsøyr and T. Dyba, "Empirical studies of agile software development: A systematic review," Inf. Softw. Technol., vol. 50, pp. 833–859, 2008.
- [13] E. Papatheocharous and A. S. Andreou, "Empirical evidence and state of practice of software agile teams," in Journal of Software: Evolution and Process, 2014, vol. 26, no. 9, pp. 855–866.
- [14] B. Kitchenham and P. Brereton, "A systematic review of systematic review process research in software engineering," Inf. Softw. Technol., vol. 55, no. 12, pp. 2049–2075, 2013.
- [15] M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile Toolkit. 2003.
- [16] D. G. Reinertsen, "The Principles of Product Development Flow: Second Generation Lean Product Development," Work, vol. 14, p. 304, 2009.
- [17] D. J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business, 3.8.2010. Blue Hole Press, 2010.
- [18] IEEE, P. Bourque, and R. E. Fairley, SWEBOK v.3. 2014.
- [19] X. Wang, K. Conboy, and O. Cawley, "Leagile' software development: An experience report analysis of the application of lean approaches in agile software development," J. Syst. Softw., vol. 85, no. 6, pp. 1287–1299, 2012.
- [20] K. Power and K. Conboy, "A Metric-Based Approach to Managing Architecture-Related Impediments in Product Development Flow: An Industry Case Study from Cisco," in 2015 IEEE/ACM 2nd International Workshop on Software Architecture and Metrics, 2015, pp. 15–21.
- [21] K. Petersen, "A Palette of Lean Indicators to Detect Waste in Software Maintenance: A Case Study," 2012, pp. 108–122.
- [22] V. Liubchenko, "A review of agile practices for project management," in 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT), 2016, pp. 168–170.
- [23] K. N. Manjunath, J. Jagadeesh, and M. Yogeesh, "Achieving quality product in a long term software product development in healthcare application using Lean and Agile principles: Software engineering and software development," in 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013, pp. 26–34.
- [24] T. Karvonen, P. Rodriguez, P. Kuvaja, K. Mikkonen, and M. Oivo, "Adapting the Lean Enterprise Self-Assessment Tool for the Software Development Domain," in 2012 38th Euromicro Conference on Software Engineering and Advanced Applications, 2012, pp. 266–273.
- [25] T. Scheerer, Alexander; Schmidt, Christoph T.; Heinzl, Armin; Hildenbrand and D. Voelz, "Agile Software Engineering Techniques: The Missing Link in Large Scale Lean Product Development," in Lecture Notes in Informatics Proceedings, 2013, pp. 319–330.

- [26] B. Boehm, J. Lane, and S. Koolmanojwong, "An Orthogonal Framework for Improving Life Cycle Affordability," Procedia Comput. Sci., vol. 16, pp. 1170–1179, 2013.
- [27] P. Rodríguez, K. Mikkonen, P. Kuvaja, M. Oivo, and J. Garbajosa, "Building lean thinking in a telecom software development organization: strengths and challenges," in Proceedings of the 2013 International Conference on Software and System Process ICSSP 2013, 2013, p. 98.
- [28] U. K. Durrani, Z. Pita, and J. Richardson, "Coexistence of agile and SCM practices," J. Syst. Inf. Technol., vol. 16, no. 1, pp. 20–39, Mar. 2014.
- [29] M. Paasivaara and C. Lassenius, "Communities of practice in a large distributed agile software development organization – Case Ericsson," Inf. Softw. Technol., vol. 56, no. 12, pp. 1556–1577, Dec. 2014.
- [30] B. Fitzgerald and K.-J. Stol, "Continuous software engineering and beyond: trends and challenges," in Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering RCoSE 2014, 2014, pp. 1–9.
- [31] T. Lehtonen, T. Kilamo, S. Suonsyrja, and T. Mikkonen, "Continuous, Lean, and Wasteless: Minimizing Lead Time from Development Done to Production Use," in 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2016, pp. 73–77.
- [32] J. Werewka, K. Jamróz, and D. Pitulej, "Developing Lean Architecture Governance at a Software Developing Company Applying ArchiMate Motivation and Business Layers," 2014, pp. 492–503.
- [33] N. Bin Ali, K. Petersen, and B. B. N. de França, "Evaluation of simulation-assisted value stream mapping for software product development: Two industrial cases," Inf. Softw. Technol., vol. 68, pp. 45–61, Dec. 2015.
- [34] B. Fitzgerald, M. Musiał, and K.-J. Stol, "Evidence-based decision making in lean software project management," in Companion Proceedings of the 36th International Conference on Software Engineering ICSE Companion 2014, 2014, pp. 93–102.
- [35] T. Hayata, J. Han, and M. Beheshti, "Facilitating Agile Software Development with Lean Architecture in the DCI Paradigm," in 2012 Ninth International Conference on Information Technology New Generations, 2012, pp. 343–348.
- [36] K. Power and K. Conboy, "Impediments to Flow: Rethinking the Lean Concept of 'Waste' in Modern Software Development," 2014, pp. 203–217.
- [37] A. Shalloway, "Integrating lean thinking to achieve multi-product and multi-team agility," Cut. IT J., vol. 26, no. 6, pp. 18–23, 2013.
- [38] M. Shcherbakov, N. Shcherbakova, A. Brebels, T. Janovsky, and V. Kamaev, "Lean Data Science Research Life Cycle: A Concept for Data Analysis Software Development," in Communications in Computer and Information Science (CCIS), 2014, pp. 708–716.
- [39] M. Misaghi and I. Bosnic, "Lean Mindset in Software Engineering: A Case Study in a Software House in Brazilian State of Santa Catarina," in Communications in Computer and Information Science (CCIS), Springer, Cham, 2014, pp. 697–707.
- [40] U. Viswanath, "Lean Transformation: Adapting to the change, factors for success and lessons learnt during the journey: A case study in a multi location software product development team," in Proceedings of the 9th India Software Engineering Conference on ISEC '16, 2016, pp. 156–162.
- [41] R. L. Nord, I. Ozkaya, and R. S. Sangwan, "Making Architecture Visible to Improve Flow Management in Lean Software Development," IEEE Softw., vol. 29, no. 5, pp. 33–39, Sep. 2012.
- [42] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen, "On rapid releases and software testing: a case study and a semi-systematic literature review," Empir. Softw. Eng., vol. 20, no. 5, pp. 1384–1425, Oct. 2015.
- [43] B. Boehm, S. Koolmanojwong, J. A. Lane, and R. Turner, "Principles for Successful Systems Engineering," Procedia Comput. Sci., vol. 8, pp. 297–302, 2012.
- [44] L. E. Lwakatare, P. Kuvaja, and M. Oivo, "Relationship of DevOps to Agile, Lean and Continuous Deployment," in Lecture Notes in Computer Science (LNCS), 2016, pp. 399–415.
- [45] M. Staron, W. Meding, and K. Palm, "Release Readiness Indicator for Mature Agile and Lean Software Development Projects," in Lecture Notes in Business Information Processing (LNBIP), 2012, pp. 93–107.
- [46] Z. Z. R., Salo; Poranen T., "Requirements management in GitHub with a lean approach," in 14th Symposium on Programming Languages and Software Tools (SPLST'15), 2015, pp. 164–178.
- [47] B. S. Blau, T. Hildenbrand, R. Knapper, A. Mazarakis, Y. Xu, and M. G. Fassunge, "Steering through Incentives in Large-Scale Lean Software Development," in Communications in Computer and Information Science, Vol 275., Berlin: Springer, 2013, pp. 32–48.

- [48] P. Rodríguez, J. Markkula, M. Oivo, and K. Turula, "Survey on agile and lean usage in finnish software industry," in Proceedings of the ACM-IEEE international symposium on Empirical software engineering and measurement ESEM '12, 2012, p. 139.
- [49] H. Jonsson, S. Larsson, and S. Punnekkat, "Synthesizing a Comprehensive Framework for Lean Software Development," in 2013 39th Euromicro Conference on Software Engineering and Advanced Applications, 2013, pp. 1–8.
- [50] K. D. Palmer, "The Essential Nature of Product Traceability and its Relation to Agile Approaches," Procedia Comput. Sci., vol. 28, pp. 44–53, 2014.
- [51] I. Nurdiani, J. Barstler, and S. A. Fricker, "The impacts of agile and lean practices on project constraints: A tertiary study," J. Syst. Softw., vol. 119, pp. 162–183, 2016.
- [52] O. Al-Baik and J. Miller, "The kanban approach, between agility and leanness: a systematic review," Empir. Softw. Eng., vol. 20, no. 6, pp. 1861–1897, Dec. 2015.
- [53] Yilang Wu, K. Sato, Lei Jing, Junbo Wang, and Zixue Cheng, "The lean awareness in software-intensive engineering: Experience from one project," in 2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST), 2015, pp. 168–173.
- [54] J. Pernstål, R. Feldt, and T. Gorschek, "The lean gap: A review of lean approaches to large-scale software systems development," J. Syst. Softw., vol. 86, no. 11, pp. 2797–2821, Nov. 2013.
- [55] M. Paasivaara, B. Behm, C. Lassenius, and M. Hallikainen, "Towards Rapid Releases in Large-Scale XaaS Development at Ericsson: A Case Study," in 2014 IEEE 9th International Conference on Global Software Engineering, 2014, pp. 16–25.
- [56] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, "Using metrics in Agile and Lean Software Development A systematic literature review of industrial studies," Inf. Softw. Technol., vol. 62, pp. 143–163, Jun. 2015.
- [57] N. Behroozi and A. Kamandi, "Waste elimination of agile methodologies in web engineering," in 2016 Second International Conference on Web Research (ICWR), 2016, pp. 102–107.
- [58] Jaroslav Skrabálek; Christina Böhm, "Why modern mobile and web-based development need a lean agile web approach (LAWA)," in 21st Interdisciplinary Information Management Talks, 2013, pp. 225–232.
- [59] J. Heidenberg, M. Weijola, K. Mikkonen, and I. Porres, "A Model for Business Value in Large-Scale Agile and Lean Software Development," 2012, pp. 49–60.
- [60] M. Walter, R. Tramontini, R. M. Fontana, S. Reinehr, and A. Malucelli, "From Sprints to Lean Flow: Management Strategies for Agile Improvement," 2015, pp. 310–318.
- [61] R. Turner, "A lean approach to scheduling systems engineering resources," CrossTalk, pp. 1–7, 2013.
- [62] E. and F. E. P. Corona, "A Review of Lean-Kanban Approaches in the Software Development," WSEAS Trans. Inf. Sci. Appl., vol. 10, no. 1, pp. 1–13, 2013.
- [63] R. Turner and J. A. Lane, "Goal-question-Kanban: Applying Lean Concepts to Coordinate Multi-level Systems Engineering in Large Enterprises," Procedia Comput. Sci., vol. 16, pp. 512–521, 2013.
- [64] D. I. K. Sjoberg, A. Johnsen, and J. Solberg, "Quantifying the Effect of Using Kanban versus Scrum: A Case Study," IEEE Softw., vol. 29, no. 5, pp. 47–53, Sep. 2012.
- [65] M. Olszewska (née Pląska), J. Heidenberg, M. Weijola, K. Mikkonen, and I. Porres, "Quantitatively measuring a large-scale agile transformation," J. Syst. Softw., vol. 117, pp. 258–273, Jul. 2016.
- [66] A. Tregubov and J. A. Lane, "Simulation of Kanban-based Scheduling for Systems of Systems: Initial Results," Procedia Comput. Sci., vol. 44, pp. 224–233, 2015.
- [67] J. Liker, The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer. New York, NY, 2004.
- [68] G. Anand, A. Chandrashekar, and G. Narayanamurthy, "Business Process Reengineering Through Lean Thinking: A Case Study," J. Enterp. Transform., vol. 4, pp. 123–150, 2014.
- [69] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto, and P. Abrahamsson, "Performance Alignment Work: How software developers experience the continuous adaptation of team performance in Lean and Agile environments," Inf. Softw. Technol., vol. 64, pp. 132–147, Aug. 2015.
- [70] P. Kettunen and S. Moilanen, "Sensing High-Performing Software Teams: Proposal of an Instrument for Self-monitoring," in Lecture Notes in Business Information Processing (LNBIP), Vol 111., Berlin, Heidelberg: Springer, 2012, pp. 77–92.
- [71] P. J. Lane, Michael; Fitzgerald, Brian; Agerfalk, "Identifying lean software development values," in Proceedings of 21st European Conference on Information Systems (ECIS), 2012, pp. 1–12.
- [72] F. T. Shah, S. Shamail, and N. Ahmad Akhtar, "Lean quality improvement model for quality practices in software industry in Pakistan," J. Softw. Evol. Process, vol. 27, no. 4, pp. 237–254, Apr. 2015.

- [73] R. J. Kusters, F. M. Munneke, and J. J. M. Trienekens, "The Impact of Lean Techniques on Factors Influencing Defect Injection in Software Development," in Proceedings of the 17th International Conference on Enterprise Information Systems, 2015, pp. 412–419.
- [74] M. O. Ahmad, K. Liukkunen, and J. Markkula, "Student perceptions and attitudes towards the software factory as a learning environment," in 2014 IEEE Global Engineering Education Conference (EDUCON), 2014, pp. 422–428.
- [75] D. Taibi, A. Janes, and V. Lenarduzzi, "Towards a Lean Approach to Reduce Code Smells Injection: An Empirical Study," in Lecture Notes in Business Information Processing, Vol 251., Springer, 2016, pp. 300–304.
- [76] J. Choudhury and B. Thushara, "Software Documentation in a Globally Distributed Environment," in 2014 IEEE 9th International Conference on Global Software Engineering, 2014, pp. 90–94.
- [77] U. Samanta and V. S. Mani, "Successfully Transforming to Lean by Changing the Mindset in a Global Product Development Team," in 2015 IEEE 10th International Conference on Global Software Engineering, 2015, pp. 135–139.
- [78] K. Dikert, M. Paasivaara, and C. Lassenius, "Challenges and success factors for large-scale agile transformations: A systematic literature review," J. Syst. Softw., vol. 119, pp. 87–108, Sep. 2016.
- [79] P. R. I. P. A. M. D. Jankovic, "Combining Agile and Traditional Methodologies in Medical Information Systems Development Process," in 5th Workshop of Software Quality, Analysis, Monitoring, Improvement, and Applications, 2016, pp. 65–72.
- [80] L. A. Liikkanen, H. Kilpiö, L. Svan, and M. Hiltunen, "Lean UX: the next generation of user-centered agile development?," in Proceedings of the 8th Nordic Conference on Human-Computer Interaction Fun, Fast, Foundational NordiCHI '14, 2014, pp. 1095–1100.
- [81] N. Bin Ali, K. Petersen, and K. Schneider, "FLOW-assisted value stream mapping in the early phases of large-scale software development," J. Syst. Softw., vol. 111, pp. 213–227, Jan. 2016.
- [82] M. Staron, W. Meding, and M. Caiman, "Improving Completeness of Measurement Systems for Monitoring Software Development Workflows," in Lecture Notes in Business Information Processing (LNBIP), 2013, pp. 230–243.
- [83] P.-W. Ng, "Theory based software engineering with the SEMAT kernel: preliminary investigation and experiences," in Proceedings of the 3rd SEMAT Workshop on General Theories of Software Engineering GTSE 2014, 2014, pp. 13–20.
- [84] J. Järvinen, T. Huomo, T. Mikkonen, and P. Tyrväinen, "From Agile Software Development to Mercury Business," 2014, pp. 58–71.
- [85] B. H. Ximenes, I. N. Alves, and C. C. Araújo, "Software Project Management Combining Agile, Lean Startup and Design Thinking," in Lecture Notes in Computer Science, Vol 9186., Springer, 2015, pp. 356–367.
- [86] J. Yli-Huumo, T. Rissanen, A. Maglyas, K. Smolander, and L.-M. Sainio, "The Relationship Between Business Model Experimentation and Technical Debt," in Lecture Notes in Business Information Processing, Vol 210., Springer, 2015, pp. 17–29.
- [87] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, "DevOps," IEEE Softw., vol. 33, no. 3, pp. 94–100, May 2016.
- [88] M. Isomursu, A. Sirotkin, P. Voltti, and M. Halonen, "User Experience Design Goes Agile in Lean Transformation -- A Case Study," in 2012 Agile Conference, 2012, pp. 1–10.
- [89] N. Agarwal, R. Karimpour, and G. Ruhe, "Theme-Based Product Release Planning: An Analytical Approach," in 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 4739–4748.
- [90] A. Maglyas, U. Nikula, and K. Smolander, "Lean Solutions to Software Product Management Problems," IEEE Softw., vol. 29, no. 5, pp. 40–46, Sep. 2012.
- [91] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs, "A survey of software engineering practices in Turkey," J. Syst. Softw., vol. 108, pp. 148–177, Oct. 2015.
- [92] P. Rodríguez, J. Markkula, M. Oivo, and J. Garbajosa, "Analyzing the Drivers of the Combination of Lean and Agile in Software Development Companies," 2012, pp. 145–159.
- [93] T. F. Vranić, "Animating organizational patterns," in ighth International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE '15), 2015, pp. 8–14.
- [94] M. Paasivaara and C. Lassenius, "Deepening Our Understanding of Communities of Practice in Large-Scale Agile Development," in 2014 Agile Conference, 2014, pp. 37–40.
- [95] B. Swaminathan and K. Jain, "Implementing the Lean Concepts of Continuous Improvement and Flow on an Agile Software Development Project: An Industrial Case Study," in 2012 Agile India, 2012, pp. 10–19.

- [96] M. Paasivaara, O. Väättänen, M. Hallikainen, and C. Lassenius, "Supporting a Large-Scale Lean and Agile Transformation by Defining Common Values," in Lecture Notes in Business Information Processing, Vol 199., Springer, 2014, pp. 73–82.
- [97] S. Dragicevic, S. Celar, and L. Novak, "Use of Method for Elicitation, Documentation, and Validation of Software User Requirements (MEDoV) in Agile Software Development Projects," in 2014 Sixth International Conference on Computational Intelligence, Communication Systems and Networks, 2014, pp. 65–70.
- [98] F. Fagerholm and M. Pagels, "Examining the Structure of Lean and Agile Values among Software Developers," 2014, pp. 218–233.
- [99] L. X. Wang, M. Lane, and K. Conboy, "From Agile to Lean: The Perspective of The Two Agile Online Communities of Interest," in 19th European Conference on Information Systems, 2011, pp. 1–7.

CONTEXT AWARE CLUSTERING USING GLOVE AND K-MEANS

Pulkit Juneja, Hemant Jain, Tanay Deshmukh, Siddhant Somani, B.K. Tripathy, Senior Member, IEEE, School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu, India

ABSTRACT

In this paper we propose a novel method to cluster categorical data while retaining their context. Typically, clustering is performed on numerical data. However it is often useful to cluster categorical data as well, especially when dealing with data in real-world contexts. Several methods exist which can cluster categorical data, but our approach is unique in that we use recent text-processing and machine learning advancements like GloVe and t- SNE to develop a a context-aware clustering approach (using pre-trained word embeddings). We encode words or categorical data into numerical, context-aware, vectors that we use to cluster the data points using common clustering algorithms like K-means.

KEYWORDS

Natural language processing, context-aware clustering, k-means, word embeddings, GloVe, t-SNE

For More Details: https://aircconline.com/ijsea/V8N4/8417ijsea03.pdf

Volume Link: https://www.airccse.org/journal/ijsea/vol8.html

- [1] P. Berkhin, A survey of clustering data mining techniques, in: Grouping multidimensional data, Springer, 2006, pp. 25–71.
- [2] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics) 28 (1) (1979) 100–108.
- [3] Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data mining and knowledge discovery 2 (3) (1998) 283–304.
- [4] S. Guha, R. Rastogi, K. Shim, and Rock: A robust clustering algorithm for categorical attributes, in: Data Engineering, 1999. Proceedings. 15th International Conference on, IEEE, 1999, pp. 512–521.
- [5] J. Yuan, Y. Wu, Context-aware clustering, in: Computer Vision and Pattern Recognition, 2008. CVPR2008. IEEE Conference on, IEEE, 2008, pp. 1–8.
- [6] A. M. Posonia, V. Jyothi, Context-based classification of xml documents in feature clustering, Indian Journal of Science and Technology 7 (9) (2014) 1355–1358.
- [7] D. Ienco, R. G. Pensa, R. Meo, Context-based distance learning for categorical data clustering, in: International Symposium on Intelligent Data Analysis, Springer, 2009, pp. 83–94.
- [8] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, arXiv preprint arXiv: 1301.3781.
- [9] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in: Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543.URLhttp://www.aclweb.org/anthology/D14-1162
- [10] X. Rong, word2vec parameter learning explained, arXiv preprint arXiv: 1411.2738.
- [11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent semantic analysis, Journal of the American society for information science 41 (6) (1990) 391.
- [12] K. Lund, C. Burgess, Producing high-dimensional semantic spaces from lexical co-occurrence, Behaviour Research Methods, Instruments, & Computers 28 (2) (1996) 203–208.
- [13] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research 12 (Jul) (2011) 2121–2159.
- [14] H. Chernoff, The use of faces to represent points in k-dimensional space graphically, Journal of the American Statistical Association 68 (342) (1973) 361–368.
- [15] H. Hotelling, Analysis of a complex of statistical variables into principal components. Journal of educational psychology 24 (6) (1933) 417.
- [16] P. Jaccard, Etude comparative de la distribution florale dans une portion des Alpes et du Jura, Impr.Corbaz, 1901.
- [17] R. Bellman, R. Corporation, Dynamic Programming, Rand Corporation research study, Princeton University Press, 1957.URLhttps://books.google.it/books?id=wdtoPwAACAAJ
- [18] D. J. Ketchen, C. L. Shook, The application of cluster analysis in strategic management research: an analysis and critique, Strategic management journal 17 (6) (1996) 441–458.
- [19] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of computational and applied mathematics 20 (1987) 53–65.

AUTHORS

Pulkit Juneja – B.Tech. Computer Science and Engineering, Vellore Institute of Technology, Vellore, India (2017 Batch) Currently working at McKinsey and Co.

Hemant Jain – B.Tech. Computer Science and Engineering, Vellore Institute of Technology, Vellore, India (2017 Batch) Joining University of Washington, MS in Data Science (2017-19)

Tanay Deshmukh – B.Tech. Computer Science and Engineering, Vellore Institute of Technology, Vellore, India (2017 Batch)Joining University of Southern California, MS in Computer Science conc. in Data Science (2017-19)

Siddhant Somani – B.Tech. Computer Science and Engineering, Vellore Institute of Technology, Vellore, India (2017 Batch) Joining Columbia University, MS in Computer Science (2017-19)

B. K. Tripathy – Senior Professor, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India Areas of practice – Machine Learning, Data Mining, Artificial Intelligence, Clustering, Fuzzy Sets

A NOVEL EFFORT ESTIMATION MODEL FOR SOFTWARE REQUIREMENT CHANGES DURING SOFTWARE DEVELOPMENT PHASE

Jalal Shah, Nazri Kama and Nur Azaliah A Bakar Department of Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

ABSTRACT

Software Requirements Changes is a typical phenomenon in any software development project. Restricting incoming changes might cause user dissatisfaction and allowing too many changes might cause delay in project delivery. Moreover, the acceptance or rejection of the change requests become challenging for software project managers when these changes are occurred in Software Development Phase. Where in Software Development Phase software artifacts are not in consistent state such as: some of the class artifacts are Fully Developed, some are Half Developed, some are Major Developed, some are Minor Developed and some are Not Developed yet. However, software effort estimation and change impact analysis are the two most common techniques which might help software project managers in accepting or rejecting change requests during Software Development Phase. The aim of this research is to develop a new software change effort estimation model which helps software project manager in estimating the effort for software Requirement Changes during Software Development Phase. Thus, this research has analyzed the existing effort estimation models and change impact analysis techniques for Softwrae Development Phase from the literature and proposed a new software change effort estimation model by combining change impact analysis technique with effort estimation model. Later, the new proposed model has been evaluated by selecting four small size software projects as case selections in applying experimental approch. The experiment results show that the overall Mean Magnitude Relative Error value produced by the new proposed model is under 25%. Hence it is concluded that the new proposed model is applicable in estimating the amount of effort for requirement changes during SDP.

KEYWORDS

Software Change Effort Estimation, Software Requirement Changes, Function Point Analysis, Constructive Cost Model and Software Development Phase.

For More Details: https://aircconline.com/ijsea/V9N6/9618ijsea02.pdf

Volume Link: https://www.airccse.org/journal/ijsea/current.html

- [1] H. Kerzner, Project management best practices: Achieving global excellence: John Wiley & Sons, 2018.
- [2] M. Gupta and A. Kalia, "Empirical Study of Software Metrics," Research Journal of Science and Technology, vol. 9, pp. 17-24, 2017.
- [3] T. O. A. Lehtinen, M. V. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius, "Perceived causes of software project failures An analysis of their relationships," Information and Software Technology, vol. 56, pp. 623-643, 6// 2014.
- [4] R. Kaur and J. Sengupta, "Software Process Models and Analysis on Failure of Software Development Projects," CoRR, vol. abs/1306.1068, 2013.
- [5] M. Bano, S. Imtiaz, N. Ikram, M. Niazi, and M. Usman, "Causes of requirement change A systematic literature review," in Evaluation & Assessment in Software Engineering (EASE 2012), 16th International Conference on, 2012, pp. 22-31.
- [6] J. Shah and N. Kama, "Issues of Using Function Point Analysis Method for Requirement Changes During Software Development Phase.," presented at the Asia Pacific Requirements Engeneering Conference, Melaka Malaysia, 2018.
- [7] J. Shah and N. Kama, "Extending Function Point Analysis Effort Estimation Method for Software Development Phase," presented at the Proceedings of the 2018 7th International Conference on Software and Computer Applications, Kuantan, Malaysia, 2018.
- [8] J. Shah and N. Kama, "Extending Function Point Analysis Effort Estimation Method for Software Development Phase," in Proceedings of the 2018 7th International Conference on Software and Computer Applications, 2018, pp. 77-81.
- [9] Kama and M. Halmi, "Extending Change Impact Analysis Approach for Change Effort Estimation in the Software Development Phase," in WSEAS International Conference. Proceedings. Recent Advances in Computer Engineering Series, 2013.
- [10] N. K. Jalal Shah, Saiful Adli Ismail, "An Empirical Study with Function Point Analysis for Software Development Phase Method," presented at the 2018 7th International Conference on Software and Information Engineering (ICSIE 2018), Cairo, Egypt, 2018.
- [11] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "Change effort estimation based on UML diagrams application in UCP and COCOMOII," in 2015 10th International Joint Conference on Software Technologies (ICSOFT), 2015, pp. 1-8.
- [12] D. Kchaou, N. Bouassida, and H. Ben-Abdallah, "UML models change impact analysis using a text similarity technique," IET Software, vol. 11, pp. 27-37, 2017.
- [13] A. Hira, S. Sharma, and B. Boehm, "Calibrating COCOMO® II for projects with high personnel turnover," presented at the Proceedings of the International Conference on Software and Systems Process, Austin, Texas, 2016.
- [14] A. Hira and B. Boehm, "Function Point Analysis for Software Maintenance," presented at the Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Ciudad Real, Spain, 2016.
- [15] L. M. Alves, A. Sousa, P. Ribeiro, and R. J. Machado, "An empirical study on the estimation of software development effort with use case points," in 2013 IEEE Frontiers in Education Conference (FIE), 2013, pp. 101-107.
- [16] H. Rastogi, S. Dhankhar, and M. Kakkar, "A survey on software effort estimation techniques," in Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference -, 2014, pp. 826-830.
- [17] K. Usharani, V. V. Ananth, and D. Velmurugan, "A survey on software effort estimation," in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 505-509.
- [18] R. Britto, V. Freitas, E. Mendes, and M. Usman, "Effort Estimation in Global Software Development: A Systematic Literature Review," in 2014 IEEE 9th International Conference on Global Software Engineering, 2014, pp. 135-144.
- [19] A. Idri, M. Hosni, and A. Abran, "Systematic literature review of ensemble effort estimation," Journal of Systems and Software, vol. 118, pp. 151-175, 8// 2016.
- [20] M. d. F. Junior, M. Fantinato, and V. Sun, "Improvements to the Function Point Analysis Method: A Systematic Literature Review," IEEE Transactions on Engineering Management, vol. 62, pp. 495-506, 2015.

- [21] B.Chinthanet, P.Phannachitta, Y. Kamei, P. Leelaprute, A. Rungsawang, N. Ubayashi, et al., "A review and comparison of methods for determining the best analogies in analogy-based software effort estimation," presented at the Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 2016.
- [22] S.Basri, N.Kama, F. Haneem, and S. A. Ismail, "Predicting effort for requirement changes during software development," presented at the Proceedings of the Seventh Symposium on Information and Communication Technology, Ho Chi Minh City, Viet Nam, 2016.
- [23] M.Shahid and S.Ibrahim, "Change impact analysis with a software traceability approach to support software maintenance," in 2016 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2016, pp. 391-396.
- [24] S.Basri, N.Kama, and R. Ibrahim, "A Novel Effort Estimation Approach for Requirement Changes during Software Development Phase," International Journal of Software Engineering and Its Applications, vol. 9, pp. 237-252, 2015.
- [25] O.Fedotova, L.Teixeira, and H. Alvelos, "Software Effort Estimation with Multiple Linear Regression: Review and Practical Application," J. Inf. Sci. Eng., vol. 29, pp. 925-945, 2013.
- [26] A.Idri, F.a. Amazal, and A. Abran, "Analogy-based software development effort estimation: A systematic mapping and review," Information and Software Technology, vol. 58, pp. 206-230, 2// 2015.
- [27] M.Kaur and S.K. Sehra, "Particle swarm optimization based effort estimation using Function Point analysis," in Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on, 2014, pp. 140-145.
- [28] N.K. b. Jalal Shah*a, Amelia Zahari, "AN EMPIRICAL STUDY WITH FUNCTION POINT ANALYSIS FOR REQUIREMENT CHANGES DURING SOFTWARE DEVELOPMENT PHASE," in ASIA International Multidisciplinary Conference 2017, Johor Bharu, 2017.
- [29] B.Sufyan, K. Nazri, H. Faizura, and A. I. Saiful, "Predicting effort for requirement changes during software development," presented at the Proceedings of the Seventh Symposium on Information and Communication Technology, Ho Chi Minh City, Viet Nam, 2016.
- [30] V.K. Bardsiri, D.N.A. Jawawi, A. K. Bardsiri, and E. Khatibi, "LMES: A localized multi-estimator model to estimate software development effort," Engineering Applications of Artificial Intelligence, 2013
- [31] F.Ferrucci, C. Gravino, and L. Lavazza, "Simple function points for effort estimation: a further assessment," presented at the Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 2016.
- [32] A.J. Albrecht, "AD/M productivity measurement and estimate validation," IBM Corporate Information Systems, IBM Corp., Purchase, NY, 1984.
- [33] P.Vickers and C. Street, "An Introduction to Function Point Analysis," School of Computing and Mathematical Sciences, Liverpool John Moores University, Liverpool, UK, 2001.
- [34] S.Sabrjoo, M Khalili, and M. Nazari, "Comparison of the accuracy of effort estimation methods," in 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2015, pp. 724-728.
- [35] V.Anandhi and R. M. Chezian, "Regression techniques in software effort estimation using cocomo dataset," in Intelligent Computing Applications (ICICA), 2014 International Conference on, 2014, pp. 353-357.
- [36] B.W. Boehm, Software Cost Estimation with Cocomo II: Prentice Hall, 2000.
- [37] S.Basri, N. Kama, and R. Ibrahim, "COCHCOMO: An extension of COCOMO II for Estimating Effort for Requirement Changes during Software Development Phase," 2016.
- [38] Asl and Kama, "A Change Impact Size Estimation Approach during the Software Development," in 2013 22nd Australian Software Engineering Conference, 2013, pp. 68-77.
- [39] B.Sufyan, K. Nazri, A. Saiful, and H. Faizura, "Using static and dynamic impact analysis for effort estimation," IET Software, vol. 10, pp. 89-95, 2016.
- [40] N.Kama and F.Azli, "A Change Impact Analysis Approach for the Software Development Phase," presented at the Proceedings of the 2012 19th Asia-Pacific Software Engineering Conference Volume 01, 2012.
- [41] N.Kama and F.Azli, "A Change Impact Analysis Approach for the Software Development Phase," in 2012 19th Asia-Pacific Software Engineering Conference, 2012, pp. 583-592.
- [42] B.W. Boehm, R. Madachy, and B. Steece, Software cost estimation with Cocomo II with Cdrom: Prentice Hall PTR, 2000.
- [43] J.W. Creswell, Research design: Qualitative, quantitative, and mixed methods approaches: Sage

- publications, 2013.
- [44] R.De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, et al., "Software engineering for self-adaptive systems: A second research roadmap," in Software Engineering for Self-Adaptive Systems II, ed: Springer, 2013, pp. 1-32.
- [45] C.Wohlin and A. Aurum, "Towards a decision-making structure for selecting a research design in empirical software engineering," Empirical Software Engineering, vol. 20, pp. 1427-1455, 2015.
- [46] D.Garmus and D. Herron, "Function Point Analysis: Measurement Practices for Successful Software Projects pdf," 2001.
- [47] J.J.Cuadrado-Gallego, P. Rodriguez-Soria, A. Gonzalez, D. Castelo, and S. Hakimuddin, "Early Functional Size Estimation with IFPUG Unit Modified," in Computer and Information Science (ICIS), 2010 IEEE/ACIS 9th International Conference on, 2010, pp. 729-733.
- [48] Q.S.Management. (2018). Function Point Languages Table. Available: http://www.qsm.com/resources/function-point-languages-table
- [49] M.Jorgensen and K. Molokken-Ostvold, "Reasons for software effort estimation error: impact of respondent role, information collection approach, and data analysis method," IEEE Transactions on Software engineering, vol. 30, pp. 993-1007, 2004.
- [50] V.Nguyen, B.Steece, and B. Boehm, "A constrained regression technique for COCOMO calibration," in Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, pp. 213-222.
- [51] S.-J. Huang, N.-H. Chiu, and L.-W. Chen, "Integration of the grey relational analysis with genetic algorithm for software effort estimation," European Journal of Operational Research, vol. 188, pp. 898-909, 2008.

AUTHORS

Jalal Shah, he is pursing PhD in the field of Software Engineering from Universiti Teknologi Malaysia. He has more than 8 year of teaching & research experience. He is currently working in the area of Software Effort Estimation. He has also published & presented papers in refereed journals and conferences.

Nazri Kama, He is an Associate Professor at Universiti Teknologi Malaysia (UTM) specializing in software engineering. He graduated in Bachelor in Management Information System from Universiti Teknologi Malaysia. Later, he obtained a Master Degree from the same university in Real-time Software Engineering. In 2011, he received a Doctorate in Software Engineering from the University of Western Australia in Australia

Nur Azaliah Abu Bakar, PhD is a Senior Lecturer at Advanced Informatics Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia. She graduated with a Bachelor (Information Technology) in Information Systems Engineering from Multimedia University (MMU) Malaysia (2000). She then obtained her Masters in Information Technology from Universiti Teknologi Mara (UiTM) in 2004. In 2017 she was awarded a Doctor of Philosophy degree in Information Technology (Enterprise Architecture) by Universiti Teknologi Malaysia

INVESTIGATING GAME DEVELOPERS' GUILT EMOTIONS USING SENTIMENT ANALYSIS

Lamiaa Mostafa and MarwaAbd Elghany
Department of Business Information Systems, College of Management and Technology,
Arab Academy for Science & Technology, Alexandria, Egypt

ABSTRACT

Game Development is one of the most important emerging fields in software engineering era. Game addiction is the nowadays disease which is combined with playing computer and videogames. Shame is a negative feeling about self evaluationas well as guilt that is considered as a negative evaluation of the transgressing behaviour, both are associated withadaptive and concealing responses. Sentiment analysis demonstrates a huge progression towards the understanding of web users' opinions. In this paper, the sentiments of game developers are examined to measure their guilt's emotions when working in this career. The sentiment analysis model is implemented through the following steps: sentiment collector, sentiment pre-processing, and then machine learning methods were used. The model classifies sentiments into guilt or no guilt and is trained with 1000 Reddit website sentiment. Results have shown that Support Vector Machine (SVM) approach is more accurate incomparison to Naïve Bayes (NV) and Decision Tree.

KEYWORDS

Ethics, Game Addiction, Guilt Emotions, Software Engineering, Sentiment Analysis Model& Value Sensitive Design

For More Details: https://aircconline.com/ijsea/V9N6/9618ijsea04.pdf

Volume Link: https://www.airccse.org/journal/ijsea/current.html

- [1] R.M. Veatch, (1977), Case Studies in Medical Ethics, Harvard University Press, Cambridge.
- [2] D.L.Schmoldt, H.M. Rauscher, (1994), 'Knowledge management and six supporting technologies', Comput. Electron.Agric., 10 (1), 11–30.
- [3] A.J.Thomson, (1997), 'Artificial Intelligence and environmental ethics', Al Appl., 11 (1), 69–73.
- [4] GerlindWisskirchen et al., (April 2017) 'Artificial Intelligence and Robotics and Their Impact on the Workplace', IBA Global Employment Institute.
- [5] K.Reed, (July/August 2000), "Software Engineering- A New Millennium?," IEEE Software, pp.107, in D.W. Gotterbarn (a), (1996), Software Engineering: The New Professionalism, The Responsible Software Engineer, ed. Colin Meyer, Springer Verlag.
- [6] R.O.Mason, (1986), 'Four ethical issues of the information age', MIS Q., vol. 10 (1), p. 5–12.
- [7] D.A.Bella, (1992), 'Ethics and the credibility of applied science', in: G.H. Reeves, D.L. Bottom, M.H. Brookes, M.H. (Technical coordinators), Ethical Questions for Resource Managers, USDA Forest Service General Technical Report PNW-GTR-288, pp. 19–32.
- [8] T.Forester, P. Morrison, (1994), Computer Ethics, MIT Press, Cambridge,.
- [9] The joint ACM/IEEE-CS Software Engineering Code was published as: Don Gotter barn, Keith Miller, and Simon Rogerson, (November 1997), 'Software Engineering Code of Ethics', Communication of the ACM, Vol. 40, Issue 11, pp. 110-118, DOI: 10.1145/265684.265699
- [10] D.Gotterbarn, (2002), SOFTWARE ENGINEERING ETHICS, published by Software Engineering Ethics Research Institute for Encyclopedia of Software Engineering.

 Available at:
 https://www.uio.no/studier/emner/matnat/ifi/INF3700/v12/undervisningsmateriale/Software%20eng e neering%20ethics.pdf
- [11] D.W. Gotterbarn (b),(1996), Establishing Standards of Professional Practice, chapter 3 in The Responsible Software Engineer, ed. Colin Meyer, Springer Verlag.
- [12] SE Code, (October 1999), Computer Society and ACM Approve Software Engineering Code of Ethics, Computer, pages 84-88.
- [13] G.Pour, M. Griss, and M. Lutz, (May 2000), "The Push to Make Software Engineering Respectable", Computer, page 35-43.
- [14] L.B. West, (October 1991), "Professional Civil Engineering: Responsibility," Journal of Professional Issues in Engineering Education and Practice, 117, 4.
- [15] D.W. Gotterbarn, (November/December 1999), "How the new Software Engineering Code of Ethics Affects You", IEEE Software, 58-64.
- [16] Wallach, Wendell og Allen, Colin, (2009), Moral Machines: Teaching Robots Right from Wrong, New York: Oxford University Press.
- [17] Jim Tørresen, (2014), Future Perspectives on Artificial Intelligence (AI), University of Oslo.
- [18] Anderson, Michael og Susan Leigh, (2011), Machine Ethics, Cambridge University Press.
- [19] BATYA FRIEDMAN, PETER H. KAHN, JR., AND ALAN BORNING, (2012), Value Sensitive Design and Information Systems, University of Washington, In P. Zhang & D. Galletta (Eds.), Human-Computer Interaction in Management Information Systems: Foundations, M.E. Sharpe, Inc: NY.
- [20] N.G. LEVESON, (1991), 'Software safety in embedded computer systems', Commun. ACM, Vol. 34, Iss. 2, P. 34-46.
- [21] B.FRIEDMAN, P. H. JR. KAHN, AND J. HAGMAN, (2003), 'Hardware companions?: What online AIBO discussion forums reveal about the human-robotic relationship', Conference Proceedings of CHI 2003, 273- 280, New York, NY: ACM Press.
- [22] P.G. NEUMANN, (1995), Computer Related Risks, New York, NY: Association for Computing Machinery Press.
- [23] E.TURIEL, (1983), The Development of Social Knowledge, Cambridge, England: Cambridge University Press.
- [24] E.TURIEL, (1998), 'Moral development', In N. Eisenberg, Ed., Social, Emotional, and Personality Development, (pp. 863-932), Vol. 3 of W. Damon, Ed., Handbook of Child Psychology, 5th edition, New York, NY: Wiley.
- [25] B.FRIEDMAN, (1997), 'Social judgments and technological innovation: Adolescents, understanding of property, privacy, and electronic information', Computers in Human Behaviour, 13(3), 327-351.
- [26] M.J. HERSKOVITS,(1952), Economic Anthropology: A Study of Comparative Economics, New York, NY: Alfred A. Knopf.

- [27] T.A. LIPINSKI, and J. J. BRITZ, (2000), 'Rethinking the ownership of information in the 21st century: Ethical implications', Ethics and Information Technology, 2, 1, 49-71.
- [28] P.E. AGRE, and M. ROTENBERG, (1998), Eds., 'Technology and Privacy: The New Landscape', MIT Press, Cambridge, MA.
- [29] V.BELLOTTI, (1998), Design for privacy in multimedia computing and communications environments, In P. E. Agre and M. Rotenberg, Eds., Technology and Privacy: The New Landscape (pp. 63-98), Cambridge, MA: The MIT Press.
- [30] M.BOYLE, C. EDWARDS, and S. GREENBERG, (2000), 'The effects of filtered video on awareness and privacy', In Proceedings of Conference on Computer Supported Cooperative Work (CSCW 2000), 1-10, New York, NY: Association for Computing Machinery.
- [31] L.FUCHS, (1999), 'AREA: A cross-application notification service for groupware', In Proceedings of ECSCW 1999, Kluwer, Dordrechet Germany, 61-80.
- [32] G.JANCKE, G. D. VENOLIA, J. GRUDIN, J. J. CADIZ, and A. GUPTA, (2001), 'Linking public spaces: Technical and social issues', In Proceedings of CHI 2001, 530-537.
- [33] L.PALEN, and P. DOURISH, (2003), 'Privacy and trust: Unpacking, privacy, for a networked world', In Proceedings of CHI 2003, 129-136.
- [34] H.NISSENBAUM, (1998), 'Protecting privacy in an information age: The problem with privacy in public', Law and Philosophy, 17, pp. 559-596.
- [35] D.J. PHILLIPS, (1998), Cryptography, secrets, and structuring of trust, In P. E. Agre and M. Rotenberg, Eds., Technology and Privacy: The New Landscape (pp. 243-276), Cambridge, MA: The MIT Press.
- [36] F.D. SCHOEMAN, (1984), Philosophical Dimensions of Privacy: An Anthology, Cambridge, England: Cambridge University Press.
- [37] M.SVENSSON, K. HOOK, J. LAAKSOLAHTI, and A. WAERN, (2001), 'Social navigation of food recipes', In Proceedings of the Conference of Human Factors in Computing Systems (CHI 2001), 341-348, New York, NY: Association for Computing Machinery.
- [38] J. ABERG, and N. SHAHMEHRI, (2001), 'An empirical study of human Web assistants: Implications for user support in Web information systems', In Proceedings of the Conference on Human Factors in Computing Systems (CHI 2000), (pp. 404-411), New York, NY: Association for Computing Machinery Press.
- [39] B.SHNEIDERMAN, (1999), 'Universal usability: Pushing human-computer interaction research to empower every citizen', ISR Technical Report 99-72, University of Maryland, Institute for Systems Research, College Park, MD.
- [40] B.SHNEIDERMAN, (2000), 'Universal usability', Commun.of the ACM, 43, 5, 84-91, 2000.
- [41] M.COOPER, and P. REJMER, (2001), 'Case study: Localization of an accessibility evaluation', In Extended Abstracts of the Conference on Human Factors in Computing Systems (CHI 2001), 141-142, New York, NY: Association for Computing Machinery Press.
- [42] J.A. JACKO, M. A. DIXON, R. H. JR. ROSA, I. U. SCOTT, and C. J. PAPPAS, (1999), 'Visual profiles: A critical component of universal access', In Proceedings of the Conference on Human Factors in Computing Systems (CHI 99), pp. 330-337, New York, NY: Association for Computing Machinery Press.
- [43] C.STEPHANIDIS, (2001),Ed. 2001 User Interfaces for All: Concepts, Methods, and Tools, Mahwah, NJ: Lawrence Erlbaum Associates.
- [44] A.BAIER, (1986), Trust and antitrust, Ethics, 231-260.
- [45] L.J. CAMP, (2000), Trust & Risk in Internet Commerce, MIT Press, Cambridge, MA, L. J.
- [46] A.DIEBERGER, K. HOOK, M. SVENSSON, and P. LONNQVIST, (2001), 'Social navigation research agenda', InExtended Abstracts of the Conference on Human Factors in Computing Systems (CHI 2001), pp. 107-108, NewYork, NY: Association of Computing Machinery Press.
- [47] F.N. EGGER, (2000) 'Trust me, I am an online vendor.: Towards a model of trust for e-commerce systemdesign', In Extended Abstracts of the Conference of Human Factors in Computing Systems (CHI 2000), 101-102, New York, NY: Association for Computing Machinery.
- [48] B.J. FOGG, and H. TSENG,(1999), 'The elements of computer credibility', In Proceedings of CHI 1999, ACM Press, 80-87.
- [49] B.FRIEDMAN, P. H. JR. KAHN, and D. C. HOWE, (2000), 'Trust online', Commun.ACM, 43, 12, 34-40.
- [50] P.H. JR. KAHN, and E. TURIEL, (1988), 'Children's conceptions of trust in the context of social expectations', Merrill-Palmer Quarterly, 34, 403-419.

- [51] R.C. MAYER, J. H. DAVIS, AND F. D. SCHOORMAN,(1995), 'An integrative model of organizational trust', The Academy of Management Review, vol. 20, issue 3, pp. 709-734.
- [52] J.S. OLSON, and G. M. OLSON, (2000), 'i2i trust in e-commerce', Communications of the ACM, 43(12), 41-44.
- [53] H.NISSENBAUM, (2001), 'Securing trust online: Wisdom or oxymoron', Boston University Law Review, 81(3), 635-664.
- [54] E.ROCCO, (1998), 'Trust breaks down in electronic contexts but can be repaired by some initial face-to-face contact', In Proceedings of CHI 1998, ACM Press, 496-502.
- [55] B.FRIEDMAN, and H. NISSENBAUM, (1997), 'Software agents and user autonomy', Proceedings of the FirstInternational Conference on Autonomous Agents, 466-469, New York, NY: Association for Computing Machinery Press.
- [56] T.E. JR. HILL, (1991), Autonomy and self-respect, Cambridge: Cambridge University Press.
- [57] E.A. ISAACS, J. C. TANG, and T. MORRIS, (1996), 'Piazza: A desktop environment supporting impromptu and planned interactions', In Proceedings of the Conference on Computer Supported Cooperative Work (CSCW 96), pp. 315-324, New York, NY: Association for Computing Machinery Press.
- [58] L.SUCHMAN, (1994), 'Do categories have politics? The language/action perspective reconsidered', CSCW Journal, vol. 2, no. 3, pp. 177-190.
- [59] T.WINOGRAD, (1994), 'Categories, disciplines, and social coordination', CSCW Journal, vol. 2, no. 3, pp. 191-197.
- [60] R.FADEN, and T. BEAUCHAMP, (1986), A History and Theory of Informed Consent, New York, NY: OxfordUniversity Press.
- [61] B.FRIEDMAN, L. MILLETT, and E. FELTEN, (2000), 'Informed Consent Online: A Conceptual Model and DesignPrinciples', University of Washington Computer Science & Engineering Technical Report 00-12-2.
- [62] The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research, The National Commission for the Protection of Human Subjects of Biomedical and Behavioural Research, 1978.
- [63] B.FRIEDMAN, and P. H. JR. KAHN, (1992), 'Human agency and responsible computing: Implications for computer system design', Journal of Systems Software, 17, 7-14.
- [64] B.FRIEDMAN, and L. MILLETT, (1995), 'It's the computer's fault: Reasoning about computers as moral agents', In Conference Companion of the Conference on Human Factors in Computing Systems (CHI 95), (pp. 226-227), New York, NY: Association for Computing Machinery Press.
- [65] B.REEVES, and C. NASS, (1996), The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places', New York, NY and Stanford, CA: Cambridge University Press and CSLI Publications.
- [66] W.J. BENNETT, and E. J. DELATREE, (1978), 'Moral education in the schools', The Public Interest, 50, pp. 81-98.
- [67] E.A. WYNNE, and K. RYAN, (1993), Reclaiming our schools: A handbook on teaching character, academics, and discipline, New York, Macmillan.
- [68] M.U. BERS, J. GONZALEZ-HEYDRICH, and D. R. DEMASO, (2001), 'Identity construction environments: Supporting a virtual therapeutic community of pediatric patients undergoing dialysis', In Proceedings of the Conference of Human Factors in Computing Systems (CHI 2001), 380-387, New York, NY: Association for Computing Machinery.
- [69] S.ROSENBERG, (1997), Multiplicity of selves, In R. D. Ashmore and L. Jussim, Eds., Self and Identity:Fundamental Issues, (pp. 23-45), New York, NY: Oxford University Press.
- [70] D.J. SCHIANO, and S. WHITE, (1998), 'The first noble truth of cyberspace: People are people (even when they MOO)', In Proceedings of the Conference of Human Factors in Computing Systems (CHI 98), 352-359, New York, NY: Association for Computing Machinery.
- [71] S.TURKLE, (1996), 'Life on the Screen: Identify in the Age of the Internet', New York, NY: Simon and Schuster.
- [72] B.FRIEDMAN, and P. H. JR. KAHN, Human values, ethics, and design, In J. Jacko and A. Sears, Eds., The Human-Computer Interaction Handbook, Lawrence Erlbaum Associates, Mahwah NJ, 2003.
- [73] M.WEISER, and J. S. BROWN, (1997), The coming age of calm technology, In P. Denning and B. Metcalfe, Eds., Beyond Calculation: The Next 50 Years of Computing, (pp. 75-85), New York, NY: Springer-Verlag.
- [74] UNITED NATIONS (2002), Report of the United Nations Conference on Environment and

- Development, held in Rio de Janeiro, Brazil, 1992. Available from:http://www.un.org/esa/sustdev/documents/agenda21/english/agenda21toc.htm
- [75] WORLD COMMISSION ON ENVIRONMENT AND DEVELOPMENT (Gro Harlem Brundtland, Chair), Our Common Future, Oxford University Press, Oxford, 1987.
- [76] M.HART, (1999), Guide to Sustainable Community Indicators, Hart Environmental Data, PO Box 361, North Andover, MA 01845, second edition.
- [77] B. MOLDAN, S. BILLHARZ, and R. MATRAVERS, (1997), Sustainability Indicators: A Report on the Project on Indicators of Sustainable Development, Wiley, Chichester, England.
- [78] NORTHWEST ENVIRONMENT WATCH, This Place on Earth 2002: Measuring What Matters, Northwest Environment Watch, 1402 Third Avenue, Seattle, WA 98101.
- [79] American Medical Association, AMA takes action on video games, Retrieved October 15, 2007, from http://www.amaassn.org/ama/pub/category/17770.html
- [80] M.Griffiths, & R. Wood, (2000), 'Risk factors in adolescence: The case of gambling, videogame playing, and the internet', Journal of Gambling Studies, vol. 16, pp. 199–225.
- [81] M.D. Griffiths, M. N. O. Davies, & D. Chappell, (2004), 'Online computer gaming: A comparison of adolescent and adult gamers', Journal of Adolescence, vol. 27, pp. 87–96.
- [82] J.P. Charlton, & I. D. W. Danforth, (2007), 'Distinguishing addiction and high engagement in the context of online game playing', Computers in Human Behavior, vol. 23, pp. 1531–1548.
- [83] S.Chiu, J. Lee, & D. Huang, (2004), 'Video game addiction in children and teenagers in Taiwan', Cyber Psychology & Behaviour, vol. 7, pp. 571–581.
- [84] T.Chou, & C. Ting, (2003), 'The role of flow in cyber-game addiction', Cyber Psychology & Behaviour, vol. 6, pp. 663–675.
- [85] S.E. Fisher, (1994), 'Identifying video game addiction in children and adolescents', Addictive Behaviours, vol. 19, pp. 545–553.
- [86] M.D. Griffiths, & M. N. O. Davies, (2005), Videogame addiction: Does it exist?, In J. Goldstein & J. Raessens (Eds.), Handbook of computer gamestudies (pp. 359–368). Boston: MIT Press.
- [87] S.M. Grüsser, C. Thalemann, & M. Griffiths, (2007), 'Excessive computer game playing: Evidence for addiction and aggression?', Cyber Psychology & Behaviour, vol. 10, pp. 290–292.
- [88] M.R. Hauge, & D. A. Gentile, (April 2003), 'Video game addiction among adolescents: Associations with academic performance and aggression', Paper presented at Society for Research in Child Development Conference, Tampa, FL.
- [89] C.Ko, J. Yen, C. Chen, S. Chen, & C. Yen, (2005), 'Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents', Journal of Nervous and Mental Disease, vol.193, pp. 273–277.
- [90] B.D. Ng, & P. Wiemer-Hastings, (2005), 'Addiction to the internet and online gaming', Cyber Psychology & Behaviour, vol. 8, pp. 110–113.
- [91] W.B. Soper, & M. J. Miller, (1983), 'Junk-time junkies: An emerging addiction among students', The School Counselor, 31, 40–43.
- [92] C.S. Wan, & W. B. Chiou, (2006), 'Psychological motives and online games addiction: A test of flow theory and humanistic needs theory for Taiwanese adolescents', Cyber Psychology & Behaviour, vol. 9, pp. 317–324.
- [93] R.A. T. Salguero, & R. M. B. Moran, (2002), 'Measuring problem video game playing in adolescents', Addiction, 97, 1601–1606.
- [94] A.F. Seay, & R. E. Kraut, (2007), 'Project massive: Self-regulation and problematic use of online gaming', In CHI 2007: Proceedings of the ACM conference on human factors in computing systems, (pp. 829–838). New York: ACM Press.
- [95] A.Johansson, & K. G. Gotestam, (2004), 'Problems with computer games without monetary reward: Similarity to pathological gambling', Psychological Reports, 95, 641–650.
- [96] G.A. Keepers, 'Pathological preoccupation with video games', Journal of the American Academy of Child & Adolescent Psychiatry, 29, 49–50, (1990).
- [97] M.Griffiths, (2005), 'A "components" model of addiction within a biopsychosocial framework, Journal of Substance Use, vol. 10, pp. 191–197.
- [98] J.Mendelson, & N. Mello, (1986), The addictive personality, New York: Chelsea House.
- [99] Knime.com [Internet].Knime; [cited 2018 Nov 11]. Available from: http://www.knime.com/
- [100] M. El-Masri, N. Altrabsheh, H. Mansour, A. Ramsay, (November 2017), 'A web-based tool for Arabic sentiment analysis', 3rd International Conference on Arabic Computational Linguistics ACLing 2017, 5–6, Dubai, United Arab Emirates.

- [101] PorterStemmer [Internet]. PorterStemmer; [cited 2018 Nov 11]. Available from: https://tartarus.org/martin/PorterStemmer/
- [102] J.Ramos, (2003), 'Using tf-idf to determine word relevance in document queries', In First International Conference on Machine Learning, New Brunswick:NJ, USA, Rutgers University.
- [103] Y.Zhang, R. Jin, &ZH.Zhou, (December 2010), 'Understanding bag-of-words model: AStaistical Framework, International Journal of Machine Learning and Cybernetics, Volume 1, Issue 1–4, pp. 43–52.
- [104] M.Araujo, P.Goncalves, M. Cha, F.Benevenuto, (2014), 'I feel: a system that compares and combines sentiment analysis methods', in: Proceedings of the 23rd International Conference on World Wide Web, ACM. pp. 75–78
- [105] N.Altrabsheh, M.Cocea, S.Fallahkhair, (2015), 'Predicting students emotions using machine learning techniques', in: The 17th International Conference on Artificial Intelligence in Education.
- [106] A.Go, R. Bhayani, L.Huang, (2009), Twitter sentiment classification using distant supervision, CS224N Project Report, Stanford.
- [107] R.Duwairi, M. El-Orfali, (2014), 'A study of the effects of preprocessing strategies on sentiment analysis for arabic text', Journal of Information Science, 40, 501–513.
- [108] B Pang, L. Lee, (2004), 'A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts', Annual Meeting on Association for Computational Linguistics, 42, 271–278.
- [109] D.Hand, (2012), 'Assessing the Performance of Classification Methods', International Statistical Review, 80, 3, 400–414.
- [110] L.Mostafa,M. Farouk, and M. Fakhry, (2009), 'An automated approach for webpage classification', ICCTA09 Proceedings of 19th International conference on computer theory and applications, Vol. 5, Issue 10,pp. 10-15.
- [111] Reddit [Internet]. Reddit; [cited 2018 Nov 12]. Available from: https://www.reddit.com/
- [112] D.Lewis, and J. Catlett, (10-13 July 1994), 'Heterogeneous Uncertainty Sampling for Supervised Learning', Proceedings of the Eleventh International Conference, Rutgers University, New Brunswick, NJ.
- [113] H.B. Lewis, (1971), Shame and guilt in neurosis, New York, NY: International Universities Press. [114] J.P. Tangney, (1991), 'Moral affect: The good, the bad, and the ugly', Journal of Personality and Social
- [114] Psychology, 61, 598-607. doi:10.1037/0022-3514.61.4.598
- [115] S.T. Wolf, T. R. Cohen, A. T.Panter, &C. A. Insko, (2010), 'Shame proneness and guilt proneness: Toward the further understanding of reactions to public and private transgressions', Self and Identity, 9, 337-362. doi:10.1080/15298860903106843
- [116] S.Roos, E. V. E. Hodges, &C. Salmivalli,, (2014), 'Do guiltand shame-proneness differentially predict prosocial, aggressive, and withdrawn behaviors during early adolescence?', Developmental Psychology, 50, 941-946. doi:10.1037/a0033904
- [117] F.Calefato, F.Lanubile, F. Maiorano, N.Novielli,(2018), 'Sentiment Polarity Detection for Software Development', Empir Software Eng (2018), 23: 1352.
- [118] B.RajatS.Gaonkar, (2017), 'Sentiment Analysis of Product Reviews using Hadoop',IJSRD International Journal for Scientific Research Development, Vol. 4, Issue 12.
- [119] X.Lei, X. Qian, (2015), 'Rating Prediction via Exploring Service Reputation', IEEE 17th International Workshop on Multimedia Signal processing.
- [120] D.Das, S. Sharma, S.Natani, N.Khare, and B. Singh,(2017), 'Sentimental Analysis for Airline Twitter data', IOP Conf. Series: Materials Science and Engineering, 263, 042067.
- [121] W.Mariel, S.Mariyah, and S. Pramana, (2018), 'Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naïve Bayes for Indonesian text'IOP Conf. Series: Journal of Physics:.Conf. Series 971, 012049.
- [122] A.Collomb, C.Costea, D.Joyeux, O. Hasan, &L. Brunie, (2014), 'A study and comparison of sentiment analysis methods for reputation evaluation', Rapport de recherche RR-LIRIS- 2014-002.