November 2025: Top Read Articles in Multimedia & Its Applications

The International Journal of Multimedia & Its Applications (IJMA)

---ERA, WJCI Indexed---

ISSN: 0975-5578(Online); 0975-5934(Print)

https://airccse.org/journal/ijma.html

THE CURRENT TRENDS OF AUGMENTED REALITY IN EARLY CHILDHOOD EDUCATION

Masyarah Zulhaida Masmuzidin and Nor Azah Abdul Aziz

Department of Creative Multimedia, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak Darul Ridzuan, Malaysia.

ABSTRACT

Augmented Reality has been widely used in various level of education such as higher-level education, secondary education (lower/upper secondary level), primary education, and in informal learning. However, the implementation in early childhood education is still limited. By using library research methodology, the objective of this paper is to investigate the existing work of augmented reality in early childhood education between 2009-2018.Based on the results, it shows that the publication of augmented reality in early childhood education increased slowly within these past ten years. It has been found that the main advantage of augmented reality is to enhance motivation. Early literacy has been found to be the most used topicwithsamplinglessthan30children.Finally, 'Marker-based' augmented reality has been widely used with mobile devices and in term of data collection methods, 'Test' has been used the most in this field of research.

KEYWORDS

Augmented Reality, Child Computer Interaction, Early Childhood Education, Preschool

Full Text: https://aircconline.com/ijma/V10N6/10618ijma05.pdf

Volume Link: https://www.airccse.org/journal/jima_current18.html

- [1] Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), pp. 355-385.
- [2] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics & Application, 21(6), pp. 34-47.
- [3] Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, pp. 41-49.
- [4] Rambli, D. R. A., Matcha, W., & Sulaiman, S. (2013). Fun learning with AR alphabet book for preschool children. Procedia computer science, 25, pp. 211-219.
- [5] Gopalan, V. (2016). A study of students' motivation based on ease of use, engaging, enjoyment and fun using the augmented reality science textbook. Revista de la Facultad de Ingeniería, 31(5).
- [6] Yilmaz, R. M., Kucuk, S., & Goktas, Y. (2017). Are augmented reality picture books magic or real for preschool children aged five to six?. British Journal of Educational Technology, 48(3), pp. 824-841.
- [7] Rasalingam, R. R., Muniandy, B., & Rass, R. (2014). Exploring the application of augmented reality technology in early childhood classroom in Malaysia. Journal of Research & Method in Education (IOSR-JRME), 4(5), pp. 33-40.
- [8] Jeffri, N. F. S., & Rambli, D. R. A. (2017). Design and development of an augmented reality book and mobile application to enhance the handwriting-instruction for pre-school children. Open Journal of Social Sciences, 5(10), pp. 361.
- [9] Hsu, Y. S., Lin, Y. H., & Yang, B. (2017). Impact of augmented reality lessons on students' STEM interest. Research and Practice in Technology Enhanced Learning, 12(1), pp. 2.
- [10] Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2015). Mobile augmented reality in vocational education and training. Procedia Computer Science, 75, pp. 49-58.
- [11] Santos, M. E. C., Taketomi, T., Yamamoto, G., Rodrigo, M. M. T., Sandor, C., & Kato, H. (2016). Augmented reality as multimedia: the case for situated vocabulary learning. Research and Practice in Technology Enhanced Learning, 11(1), pp. 4.
- [12] Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A Review of Using Augmented Reality in Education From 2011 To 2016. Paper presented at Innovations in Smart Learning, pp. 13-1.
- [13] Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2014). Augmented reality trends in education: a systematic review of research and applications.
- [14] Yilmaz, R. M. (2016). Educational magic toys developed with augmented reality technology for early childhood education. Computers in Human Behavior, 54, pp. 240-248.
- [15] Li, J., van der Spek, E. D., Feijs, L., Wang, F., & Hu, J. (2017). Augmented reality games for learning: a literature review. International Conference on Distributed, Ambient, and Pervasive Interactions, pp. 612-626.
- [16] Sirakaya, M., & Alsancak Sirakaya, D. (2018). Trends in educational augmented reality studies: a systematic review. Malaysian Online Journal of Educational Technology, 6(2), pp. 60-74.
- [17] Yilmaz, R. M. (2018). Augmented reality trends in education between 2016 and 2017 years. In N.Mohamudally (Ed.), State of the Art Virtual Reality and Augmented Reality Knowhow (pp. 81-97). London: IntechOpen.
- [18] Sidi, J., Yee, L. F., & Chai, W. Y. (2017). Interactive english phonics learning for kindergarten consonant-vowel-consonant (CVC) word using augmented reality. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-11), pp. 85-91.
- [19] Pradibta, H. (2018). Augmented reality: daily prayers for preschooler student. International Journal of Interactive Mobile Technologies (iJIM), 12(1), pp. 151-159.
- [20] Han, J., Jo, M., Hyun, E., & So, H. J. (2015). Examining young children's perception toward augmented reality-infused dramatic play. Educational Technology Research and Development, 63(3), pp. 455-474.
- [21] Gil, K., Rhim, J., Ha, T., Doh, Y. Y., & Woo, W. (2014). AR Petite Theater: Augmented reality storybook for supporting children's empathy behavior. Mixed and Augmented Reality-Media, Art, Social Science, Humanities and Design (ISMAR-MASH'D), 2014 IEEE International Symposium, pp. 13-20.
- [22] Bai, Z., Blackwell, A. F., & Coulouris, G. (2015). Exploring Expressive Augmented Reality: The Fingar Puppet System For Social Pretend Play. Paper presented at the Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1035-1044.
- [23] Pu, M., & Zhong, Z. (2018). Development of a Situational Interaction Game for Improving Preschool Children' Performance in English-Vocabulary Learning. Paper presented at the Proceedings of the 2018 International Conference on Distance Education and Learning, pp. 88-92.
- [24] Campos, P., Pessanha, S., & Jorge, J. (2011). Fostering collaboration in kindergarten through an augmented reality game. International Journal of Virtual Reality, 10(3), pp. 33.
- [25] Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-supported Collaborative Learning, 7(3), pp. 347-378.

- [26] Cascales, A., Laguna, I., Pérez-López, D., Perona, P., & Contero, M. (2013). An experience on natural sciences augmented reality contents for preschoolers. International Conference on Virtual, Augmented and Mixed Reality, pp. 103-112.
- [27] Huang, Y., Li, H., & Fong, R. (2016). Using augmented reality in early art education: a case study in Hong Kong kindergarten. Early Child Development and Care, 186(6), pp. 879-894.
- [28] He, J., Ren, J., Zhu, G., Cai, S., & Chen, G. (2014). Mobile-Based AR Application Helps To Promote EFL Children's Vocabulary Study. Paper presented at the Advanced Learning Technologies (ICALT), 2014 IEEE 14th International Conference, pp. 431-433.
- [29] Dalim, C. S. C., Dey, A., Piumsomboon, T., Billinghurst, M., & Sunar, S. (2016). Teachar: An Interactive Augmented Reality Tool for Teaching Basic English To Non-Native Children. Paper presented at the Mixed and Augmented Reality (ISMAR-Adjunct), 2016 IEEE International Symposium, pp. 82-86.
- [30] Chen, C. H., & Su, C. C. (2013). An integrated design flow in developing an augmented reality game for enhancing children chinese learning experience. International Journal of Digital Content Technology and its Applications, 7(4), pp. 907.
- [31] Bazzaza, M. W., Alzubaidi, M., Zemerly, M. J., Weruga, L., & Ng, J. (2016). Impact of Smart Immersive Mobile Learning In Language Literacy Education. Paper presented at the Global Engineering Education Conference (EDUCON), 2016 IEEE, pp. 443-447.
- [32] Motahar, T., Fatema, T., & Das, R. (2018). Bornomala AR-Bengali Learning Experience Using Augmented Reality. Paper presented at the Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, pp. 182-188.
- [33] Yasin, A. M., Isa, M. A. M., & Endut, N. A. (2016). Interactive prophet's storybook using augmented reality. Envisioning the Future of Online Learning, pp. 391-399.
- [34] Roberto, R., Freitas, D., Simoes, F., & Teichrieb, V. (2013). A Dynamic Blocks Platform Based On Projective Augmented Reality and Tangible Interfaces for Educational Activities. Paper presented at the Virtual and Augmented Reality (SVR), 2013 XV Symposium, pp. 1-9.
- [35] Safar, A. H., Al-Jafar, A. A., & Al-Yousefi, Z. H. (2017). The effectiveness of using augmented reality apps in teaching the english alphabet to kindergarten children: a case study in the state of Kuwait. Eurasia Journal of Mathematics, Science & Technology Education, 13(2).
- [36] Ati, M., Kabir, K., Abdullahi, H., & Ahmed, M. (2018). Augmented Reality Enhanced Computer Aided Learning for Young Children. Paper presented at the 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 129-133.
- [37] Cieza, E., & Lujan, D. (2018). Educational mobile application of augmented reality based on markers to improve the learning of vowel usage and numbers for children of a kindergarten in Trujillo. Procedia Computer Science, 130, pp. 352-358.
- [38] Ozdemir, M., Sahin, C., Arcagok, S., & Demir, M. K. (2018). The effect of augmented reality applications in the learning process: a meta-analysis study. Eurasian Journal of Educational Research (EJER), pp. 74.
- [39] Kipper, G., & Rampolla, J. (2013). Augmented Reality: An Emerging Technologies Guide to AR. Waltham, USA: Sygress Publishing.
- [40] Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educational Research Review, 20, pp. 1-11.
- [41] Markopoulos, P., Read, J. C., MacFarlane, S., & Hoysniemi, J. (2008). Evaluating Children's Interactive Products: Principles and Practices for Interaction Designers. San Francisco, CA: Morgan Kaufmann Publisher Inc
- [42] Read, J. C., & Markopoulos, P. (2013). Child-computer interaction. International Journal of ChildComputer Interaction, 1(1), pp. 2-6.

AUTHORS

Masyarah Zulhaida Masmuzidin obtained her MSc in Creative Media Technology with Computer Animation and Special Effects from University of Bradford, United Kingdom. Currently, she is a PhD student at Faculty of Art Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia. Her research interest includes Interactive Multimedia, Child Computer Interaction, Virtual Reality and Augmented Reality.

Nor Azah Abdul Aziz is an Associate Professor at Faculty of Art Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia. Her research interest includes Gestural Interface Design, Child Computer Interaction, Multimedia Application Development, Islamic Spiritual Psychology, Information Technology, Internet/Web Filtering, Internet & Society.

AN ALTERNATIVE GREEN SCREEN KEYING METHOD FOR FILM VISUAL EFFECTS

Jin Zhi

Department of Creative Professions & Digital Arts, University of Greenwich, United Kingdom

ABSTRACT

This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also tested.

KEYWORDS

Digital Compositing, Green Screen Keying, Visual Effects

Full Text: https://aircconline.com/ijma/V7N2/7215ijma01.pdf

Volume Link: https://www.airccse.org/journal/ijma_current15.html

- [1] Richard, J (1994) "RKO Film Grosses: 1931-1951", Historical Journal of Film Radio and Television 14, 1, pp55.
- [2] GORBACHEV, B. K (1961). Tekhnika kombinirovannykh s''emok. Moscow, 2nd ed.
- [3] Snider., David., Glenn K., Ken C., and Michael M (1993) Digital Moving-Picture Exchange: File Format and Calibration, SMPTE Journal, pp712-714.
- [4] Mike. S (2011). The Art of Digital Color. Fxfuide
- [5] Mark, C.V., Craig, B (2002). The Invisible Art: The Legends of Movie Matte Painting. Chronicle Books, pp33.
- [6] Livingstone, M (2002) The First Stages of Processing Color and Luminance: Where and What. Vision and Art: The Biology of Seeing. New York: Harry N. Abrams, pp46–67.
- [7] Chrles, P (2003). Digital Video and HDTV: Algorithms and Interfaces. Morgan-Kaufmann. 24, pp291-292.
- [8] Larry, G., and eugene, E (2007). GPU Gems 3. Chapter 24.
- [9] Lee, L (2010). Professional Digital Compositing. Wiley Publishing, Inc., Indianapolis, pp47-51.
- [10] Hazewinkel, M (2001). Absolute value, Encyclopedia of Mathematics, Springer

AUTHORS

Dr Jin Zhi has a very wide higher education background in tradition art, design and digital moving images, film production as well as film visual effects and 3D CGI. Jin is currently working at Creative Professions & Digital Arts, University of Greenwich. In the past 10 years, Jin worked in various VFX studios including The Moving Picture, London and Cinesite Kodak Visual Effects. Meanwhile, Dr Jin also worked as a visiting lecturer in a number of universities in the UK as well as South Korea such as University of Westminster, London and Konkuk University in Seoul, South Korea. As a film VFX Compositor, Jin's visual

effects works are included in following commercial feature films: Prometheus (2012), Wrath of the Titans (2012), John Carter (2012), Harry Potter and the Deathly Hallows: Part 2 (2012). Jin's expertise and research interests widely covered in different areas in film & television post-production, especially film digital compositing, film & TV visual effects productions, creating 3D CG elements for feature films as well as digital moving image design, etc. In addition, Dr Jin has been certified as a Nuke Trainer by the Foundry UK in 2015

SELECTION SORTING ALGORITHM VISUALIZATION USING FLASH

Hadi Sutopo

Department of Informatics, Universitas Persada Indonesia YAI, Jakarta, Indonesia

ABSTRACT

This paper is intended to develop an algorithm visualization, particularly selection sorting for an Algorithm and Programming course. Algorithm visualization technology graphically illustrates how algorithms work. This visualization can be used to explain how all data move to the proper position in order to be sorted in a display computer for education. This research consists of 6 steps which are concept, design, obtaining content material, assembly, testing, and distribution. During the testing step, the application is run and checked to confirm that it performs exactly what the author has intended and the students can learn selection sorting algorithm by studying the visualization. Subjects of the research were students at Department of Informatics Universit as Persada Indonesia YAI for implementation of the learning. The data were analysed using the analytic descriptive method and interpreted ina narrative way based on the research findings. The algorithm visualization indicates that students increase their motivation and ability to program variety of sorting in programming language they learn.

KEYWORDS

Multimedia, Algorithm, Sorting, Flash movie, Action Script

Full Text: https://aircconline.com/ijma/V3N1/3111jjma03.pdf

Volume Link: https://www.airccse.org/journal/jima_current12.html

- [1] Semiawan, Conny R, (2009) Landasan Pembelajaran dalam Perkembangan Manusia, Jakarta: Center for Human Capacity Development.
- [2] Sfenrianto, (2009) "A Model of Adaptive E-Learning System Based on Student's Motivation", Proceedings from ICCIT-09: International Conference on Creative Communication and Innovative Technology, 2009. Tangerang: CCIT Journal.
- [3] Sedgewick, Robert, (2001) Algorithms in C++, Third Ediition, Massachusetss: Addison-Wesley
- [4] TenenbaumM, Aaron & Augenstein, Moshe J, (1981) Data Structures Using Pascal, Englewoods Cliffs, Prentice Hall.
- [5] Hearn, Donald, and Pauline Baker, (1996) Computer Graphics CVersion, 2ndedition. Upper Saddle River, N J: Prentice Hall International, Inc.
- [6] Vaughan, Tay, (2006) Multimedia Makingit Work, Yogyakarta: Andi Publisher.
- [7] Anleigh, Prabath K&Thakar, Kiran, (1997) Multimedia Systems Design, Upper Saddle River: Prentice Hall.
- [8] Bhatnager, Gaurav, Sikha Metha and Sugata Mitra, (2001) Introduction to Multimedia Systems, London: Academic Press.
- [9] Luther, ArcC, (1994) Authoring Interactive Multimedia. Boston: APProfessional.
- [10] Sutopo, Ariesto H, (2003) Multimedia Interaktif dengan Flash. Yogyakarta: Grahailmu.
- [11] Ypenburg, Derrick, (2009) Action Script 3.0, Berkeley, CA: Peachpit Press.
- [12] Franklin, Derek & Jobe Makar, (2002) Macromedia Flash MX Action Scripting Advanced Training from the Source, Berkeley, CA: Macromedia Press.
- [13] Sutopo, Ariesto H, (2003) Integrasi Flashdengan ASP, Jakarta: Elex Media Komputindo.

AUTHORS

Hadi Sutopo was born in Cilacap, Indonesia on April 15, 1945. He is Doctor of Education in Educational Technology of the Jakarta State University, graduated in November 2009. In 1998 he earned Master of Information Systems at Post Graduate Program Gunadarma University, Jakarta. In 1995 he graduated from the Universitas Persada Indonesia YAI. Jakarta, majoring in Informatics.

Hadi is currently a lecturer of Multimedia at the Universitas Persada Indonesia YAI and some other universities in Jakarta, Indonesia since 1998. He wrote many books on multimedia and information technology. The books are Pemrograman Berorientasi Objek dengan Java (Yogyakarta, Indonesia: Graha Ilmu, 1995), Desain Buku dengan Adobe InDesign Jakarta, Indonesia: Elex Media Komputindo, 2006), and Pemrograman Flash dengan PHP dan MySQL (Yogyakarta, Indonesia: Graha Ilmu, 2007). Current interest research is information technology especially multimedia.

Dr. Hadi Sutopo, MMSI is a member of Indonesian Association of Educational Technology (IPTPI)and Association of Education and Communication Technology (AECT). He works in editorial team of Educational Technology Journal and Multimedia Journal in Jakarta, Indonesia.

INFORMATION HIDING USING AUDIO STEGANOGRAPHY-A SURVEY

JayaramP¹, Ranganatha HR², Anupama HS³

^{1,2,3}Department of Computer Science and Engineering, RV College of Engineering, Bangalore, INDIA

ABSTRACT

Today's large demand of internet applications requires data to be transmitted in a secure manner. Data transmission in public communication system is not secure because of interception and improper manipulation by eavesdropper. So the attractive solution for this problem is Steganography, which is the art and science of writing hidden messages in such a way that no one, apart from the sender and intend recipient, suspects the existence of the message, a form of security through obscurity. Audio steganography is the scheme of hiding the existence of secret information by concealing it into another medium such as audio file. In this paper we mainly discuss different types of audio steganographic methods, advantages and disadvantages.

KEYWORD

Steganography, Cryptography ,Audio Steganography, LSB.

Full Text: https://aircconline.com/ijma/V3N3/3311ijma08.pdf

Volume Link: https://airccse.org/journal/ijma_current11.html

- [1] W. Bender, W. Butera, D. Gruhl, R. Hwang, F. J. Paiz, S. Pogreb, "Techniques for data hiding", IBM Systems Journal, Volume 39, Issue 3-4, July 2000, pp. 547 568.
- [2] Samir Kumar Bandyopadhyay, Debnath Bhattacharyya, Poulami Das, Debashis Gangulyand Swarnendu Mukherjee, "A tutorial review on Steganography", International Conference on Contemporary Computing (IC3-2008), Noida, India, August 7-9, 2008, pp. 105-114.
- [3] RobertKrenn, "Steganographyandsteganalysis", AnArticle, January 2004.
- [4] NedeljkoCvejic, TapioSeppben "IncreasingthecapacityofLSB-based audiosteganography" FIN90014 University of Oulu, Finland ,2002.
- [5] SajadShirali-ShahrezaM.T.Manzuri-Shalmani"Highcapacityerrorfreewaveletdomainspeech steganography" ICASSP 2008
- [6] Neil F.Johnson, Z.Duric and S.Jajodia. "Information Hiding Steganography and Watermarking-Attacks and Countermeasures", Kluwer Academic Publishers, 2001
- [7] F.A.P.Petitcolas, R.J.Anderson, M.G.Kuhn: "InformationHiding-A Survey", Processof IEEE, vol. 87, no. 7, pp. 1062-1078, July, 1999.
- [8] MinWu,BedeLiu. "MultimediaDataHiding",Springer-VerlagNewYork,2003.
- [9] N. Taraghi-Delgarm, "Speech Watermarking", M.Sc. Thesis, Comptuer Engineering Department, Sharif University of Technology, Tehran, IRAN, May 2006.
- [10] M. Pooyan, A. Delforouzi, "LSB-based Audio Steganography Method Based on Lifting Wavelet Transform", in Proc. 7th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT'07), December 2007, Egypt.
- [11] R.A.SantosaandP.Bao, "Audio-to-imagewavelettransformbasedaudiosteganography," Proc. of 47th Symposium ELMAR, June 2005, pp. 209-212.
- [12] Xuping Huang, Ryota Kawashima, Norihisa Segawa, Yoshihiko Abe. "The Real-Time Steganography Based on Audio-to-Audio Data Bit Stream", Technical report of IEICE, ISEC, vol.106 pp.15-22, September 2006
- [13] Aoki, Naofumi. "A Band Widening Technique for VoIP Speech Using Steganography Technology", Report of IEICE, SP,106(333), pp.31-36, 2006.
- [14] Xuping Huang, Ryota Kawashima, Norihisa Segawa, Yoshihiko Abe International Conference on Intelligent "Information Hiding and Multimedia Signal Processing" © 2008 IEEE.
- [15] A. Delforouz, Mohammad Pooyan, "Adaptive Digital Audio Steganography Based on Integer wavelet transform", IEEE Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2007, 26-28 Nov 2007, pp 283-286.
- [16] R. A. Santosa, P. Bao," Audio-to-Image Wavelet Transform based Audio Steganography", 47th International Symposium ELMAR-2005, 08-10 June 2005, Zadar, Croatia, pp 209-212.
- [17] S. Shirali-Shahreza, M. T. Manzuri-Shalmani, "Adaptive Wavelet Domain Audio Steganography with High Capacity and Low Error Rate", IEEE International Conference on Information and Emerging Technologies, 2007, 06-07 July 2007 pp 1-5.
- [18] Yincheng Qi, Jianwen Fu, and Jinsha Yuan, "Wavelet domain audio steganalysis based on statistical moments of histogram", Journal of System Simulation, Vol 20, No. 7, pp. 1912-1914, April 2008.
- [19] Yin-cheng qi, liang ye, chong liu "Wavelet domain audio steganalysis for multiplicative embedding model" Proceedings of the 2009 International Conference on Wavelet Analysis and Pattern Recognition, Baoding, 12-15 July 2009.
- [20] V. Vapnik, "Statistical Learning Theory", John Wiley, 2008.
- [21] Mengyu Qiao, Andrew H. Sung , Qingzhong Liu "Feature Mining and Intelligent Computing for MP3 Steganalysis" International Joint Conference on Bioinformatics, Systems Biologyand Intelligent Computing 2009.

AUTHORS

Jayaram P is currently doing his Engineering degree in R V College of Engineering Bangalore. Hehaspublished manypapers in National Conferences. Hisareasofresearch are Networking, Operating Systems, Data Structures, Computer Graphics and Mobile Computing.

Ranganatha H R is currently doing his Engineering degree in R V College of Engineering Bangalore. He has published many papers in National Conferences. His areas of research are Algorithms, Distributed Systems, Network security and Business Intelligence.

Anupama H S is working as an Assistant Professor in R V College of Engg Bangalore. She did B E in S.I.T College of Engg Tumkur and M.Tech in J.N.N.C.E CollegeShimoga, Karnataka, India. Her research of interest are Security, Steganography, Brain Computer Interface and Virtual Keyboard.

AN EVALUATION OF THE USE OF AUDIO GUIDANCE IN AUGMENTED REALITY SYSTEMS IMPLEMENTED AT SITES OF CULTURAL HERITAGE

Benjamin Wilson, JoshuaHull and Damian Schofield

Department of Computer Science, State University of New York, Oswego, New York, 13126, USA

ABSTRACT

Recently, museums and historic sites have begun reaching out beyond their traditional audience groups, using more innovative digital display technology to find and attract a new audience. Virtual, mixed, and Augmented Reality (AR) technologies are becoming more ubiquitous in our society and "virtual history" exhibits are starting to be available to the public. There are numerous studies focusing on AR, however a scant amount of research is being done at historical sites. An initial experiment used repeated measures (ANOVA) to compare and rank three different types of AR devices use data site of cultural heritage. A further experiment was the under taken to observe participants using two different AR devices with and without sound to determine if which device used or the presence of sound impact the usability of the device, or the user's satisfaction/preference of specific devices. Several surveys, including demographic and usability surveys, were provided in order to collect a range of user data. A two-way repeated measures (ANOVA) were used to analyze the quantitative data gathered. No significant effects were observed based on the quantitative data provided by the surveys, indicating that all devices were equally usable and satisfactory, and that sound did not have a significant impact in this instance. However, the qualitative data indicated that users may prefer using AR technology on a smart phone device and preferred to use this device paired with sound.

KEYWORDS

Augmented Reality, Audio Guide, Cultural Heritage, Human Computer Interaction (HCI), Usability

Full Text: https://aircconline.com/ijma/V14N2/14222ijma01.pdf

Volume Link: https://airccse.org/journal/ijma current22.html

- $\hbox{[1] C.Yoon (2018) ``Assumptions that led to the failure of Google Glass", NYC-Design.}$
- [2] P. A. Rauschnabel (2018) "Virtually enhancing the real world with holograms: An exploration of expected gratifications of using augmented realitysmart glasses", Psychology& Marketing, 35(8), 557-572.
- [3] D. Schofield, T. Johnson, D. Hufnal, P. Chapagain, S. Colletta, and P. Lear (2021) "Augmentingcultural experience: Evaluating the use of augmented reality technology to enhance the visitor experience at ahistoric site", Journal of Studies in Social Sciences and Humanities 7 (2) 129-145
- [4] D. Ivancic, D. Schofield, and L. Dethridge (2013) "The effects of perspective and presentation: User experience in a virtual art gallery", International Journal of Computer Research, 20(1) 53-77.
- [5] S. Sharples, S. Cobb, A. Moody, and J. R. Wilson (2008) "Virtual realityinduced symptoms and effects (VRISE): Comparison of head mounted display(HMD)", desktop and projection displaysystems. Displays, 29(2) 58-69.
- [6] Y. A. A. Pizarro, A. A. De Salles, S. Severo, J. L. Garzón, and S. M. R. Bueno (2014) "Specific Absorption Rate (SAR) in the head of Google glasses and Bluetooth user's", In IEEE Latin-America Conference on Communications (LATINCOM), 1-6.
- [7] D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg (2005) "Towards massively multi-user augmented reality on handheld devices", In International Conference on Pervasive Computing, Springer, Berlin, Heidelberg, 208-219.
- [8] P.Walsh (2020) "InnovativeTechnologyIsTheFutureOfEducation", Forbes, July.
- [9] P. Vate-U-Lan, (2012, July). An augmented reality 3d pop-up book: the development of a multimedia project for English language teaching. In IEEE International Conference on Multimedia and Expo (2012) 890-895.
- [10] J. L. Soler, J. Ferreira, M. Contero, and M. Alcañiz (2017) "The power of sight: using eye tracking to assess learning experience in virtual reality environments", In Proceedings of INTED2017, 8684-8689.
- [11] W. S. Khor, B. Baker, K. Amin, A. Chan, K. Patel, and J. Wong (2016) "Augmented and virtual reality in surgery the digital surgical environment: applications, limitations and legal pitfalls", Annals of Translational Medicine, 4(23).
- [12] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic (2011) "Augmented reality technologies, systems and applications. Multimedia Tools and Applications", 51(1) 341-377.
- [13] T. P. Caudell, and D. W. Mizell (1992) "Augmented reality: an application of heads-up display technology to manual manufacturing processes", In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, IEEE, Vol. 2 659-669.
- [14] Q. M. Bui, T. N. Le, V. T. Nguyen, M. T. Tran, and A. D. Duong (2012) "Applying fast planar object detection in multimedia augmentation for products with mobile devices", In 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, IEEE, Vol. 2 292-297.
- [15] B. B. Bederson (1995) "Audio augmented reality: a prototype automated tour guide", In Conference Companion on Human Factors in Computing Systems, 210-211.
- $[16] R.T. Azuma (1997) "A survey of augmented reality. Presence: Teleoperators and Virtual \ensuremath{{\mbox{\tt Environments}}}", 6(4)355-385.$
- [17] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster (1997) "A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment", Personal Technologies, 1(4) 208-217.
- [18] G. Reitmayr, and D. Schmalstieg (2021)" Mobile collaborative augmented reality", In Proceedings IEEE and ACM International Symposium on Augmented Reality, 114-123.
- [19] H. Kaufmann, and D. Schmalstieg (2002) "Mathematics and geometry education with collaborative augmented reality", In ACM SIGGRAPH 2002 Conference Abstracts and Applications, 37-41.
- [20] M. Mohring, C. Lessig, and O. Bimber (2004) "Video see-through AR on consumer cell-phones", In Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 252-253.
- [21] A. Henrysson, M. Billinghurst, and M. Ollila (2005)"Face toface collaborative ARon mobile phones", In Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality, 80-89.
- [22] R. M. Yilmaz, and Y. Goktas, Y. (2017) "Using augmented realitytechnology in storytellingactivities: examining elementary students' narrative skill and creativity", Virtual Reality, 21(2) 75-89.
- [23] T. Chandrasekera, and S. Y. Yoon (2018) "Augmented Reality, Virtual Reality and Their Effect on Learning Style in the Creative Design Process", Design and Technology Education, 23(1).
- [24] A. Ruiz-Ariza, R. A. Casuso, S. Suarez-Manzano, and E. J. Martínez-López (2018) "Effect of augmented reality game Pokémon GO on cognitive performance and emotional intelligence in adolescent youth", Computers and Education, 116 49-63.
- [25] J. M. Harley, E. G. Poitras, A. Jarrell, M. C. Duffy, and S. P. Lajoie, S. P. (2016) "Comparing virtual andlocation-basedaugmentedrealitymobilelearning:emotionsandlearningoutcomes", Educational

- TechnologyResearchandDevelopment,64(3),359-388.
- [26] C. Suso-Ribera, J. Fernández-Álvarez, A. García-Palacios, H. G. Hoffman, J. Bretón-López, R. M. Banos, and C. Botella (2019) "Virtualreality, augmentedreality, and in vivoexposuretherapy: a preliminary comparison of treatment efficacy in small animal phobia", Cyberpsychology, Behavior, and Social Networking, 22(1) 31-38.
- [27] C. F. Tsai, S. C. Yeh, Y. Huang, Z. Wu, J. Cui, and L. Zheng (2018) "The effect of augmented reality and virtual reality on inducing anxiety for exposure therapy: a comparison using heart rate variability", Journal of Healthcare Engineering, 1-8.
- [28] D. Mouraux, E. Brassinne, S. Sobczak, A. Nonclercq, N. Warzée, P.S. Sizer, and B. Penelle (2019) "3D augmented reality mirror visual feedback therapy applied to the treatment of persistent, unilateral upper extremity neuropathic pain: a preliminary study", Journal of Manual & Manipulative Therapy, 25(3), 137-143.
- [29] P. A. Rauschnabel, R. Felix, and C. Hinsch (2019) "Augmented reality marketing: Howmobile ARapps can improve brands through inspiration", Journal of Retailing and Consumer Services, 49,43-53.
- [30] T. Hilken, K. de Ruyter, M. Chylinski, D. Mahr, and D. I. Keeling (2017) "Augmenting the eye of the beholder: exploring the strategic potential of augmented reality to enhance online service experiences", Journal of the Academy of Marketing Science, 45(6), 884-905.
- [31] R. Yung, and C. Khoo-Lattimore (2019) "New realities: a systematic literature review on virtual reality and augmented reality in tourism research", Current Issues in Tourism, 22(17) 2056-2081.
- [32] D. I. Han, M. C. Dieck, and T. Jung, T (2018) "User experience model for augmented reality applications in urban heritage tourism", Journal of Heritage Tourism, 13(1),46-61.
- [33] C. D. Kounavis, A. E. Kasimati, and E. D. Zamani (2012) "Enhancing the Tourism Experience through Mobile Augmented Reality: Challenges and Prospects", International Journal of Engineering Business Management, 4, 10.
- [34] A. Tomiuc (2012) "Navigating Culture. Enhancing Visitor Museum Experience through Mobile Technologies. From Smartphone to Google Glass", Journal of Media Research-Revista de Studii Media, 7(3:20) 33-46.
- [35] T. Jung, M. C. Dieck, H. Lee, and N. Chung, Effects of virtual reality and augmented reality on visitor experiences in museum. Information and Communication Technologies in Tourism, (2016) 621-635.
- [36] C.Edwards(2013)"BetterthanReality?", Engineering and Technology, 8(4)28-31.
- [37] K. D. Johnson, J. C. Díaz, and R. B. Pickering(2012) "Virtual Toursfor Museum Exhibits. Proceedings of Electronic Visualisation and the Arts Conference", (EVA 2012), London, UK, 100-106.
- [38] D. Tsichritzis and S. J. Gibbs (1991) "Virtual Museums and Virtual Realities", In proceedings of the International Conference on Hypermedia and Interactivity in Museums, 17-25.
- [39] C. Lin-Hendel(2009) "System and method for constructing and displaying active virtual reality cyber malls, show rooms, galleries, stores, museums, and objects within", (United States Patent No. US7574381B1).
- [40] S. A. Yoon and J. Wang (2014) "Making the invisible visible in science museums through augmented reality devices", TechTrends, 58(1) 49-55.
- [41] A. Damala, P. Cubaud, A. Bationo, P. Houlier, and I. Marchal (2008) "Bridging the gap between the digital and the physical: design and evaluation of a mobile augmented reality guide for the museum visit", Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, ACM, 120 127.
- [42] S. Sylaiou, A. Karoulis, Y. Stavropoulos, and P. Patias, (2008) "Presence-Centered Assessment of Virtual Museums' Technologies", DESIDOC Journal of Libraryand Information Technology, 28(4), 55–62.
- [43] M. T. Yang and W. C. Liao, W. C. (2014) "Computer-assisted culture learning in an online augmented reality environment based on free-hand gesture interaction" IEEE Transactions on Learning Technologies, 7(2) 107-117.
- [44] N. Ghouaiel, S. Garbaya, J. M. Cieutat, and J. P. Jessel (2017) "Mobile Augmented Reality in Museums: Towards Enhancing Visitor's Learning Experience", International Journal of Virtual Reality, 17(1) 21–31.
- [45] M. Ding(2017)"Augmentedrealityin museums, Museums & augmentedreality—A collection of essays from the arts management and technology laboratory", 1-15.
- [46] M.C.T.Dieck, T.Jungand D.Han (2016) "Mapping requirements for the wear ables martglasses augmented reality museum application", Journal of Hospitality and Tourism Technology, 7(3) 230-253.
- [47] P.A.Rauschnabel (2018) "Virtually enhancing the real world withholograms: An exploration of expected gratifications of using augmented reality smartglasses", Psychology and Marketing, 35(8) 557-572.
- [48] National Historic Landmarks Program (U.S. National Park Service). (2018, August 29). Retrieved July 8, 2020, from https://www.nps.gov/orgs/1582/index.htm
- [49] B.K.Seo,K.Kim,andJ.I.Park(2010)"Augmentedreality-basedon-sitetourguide:astudyin

Gyeongbokgung", InProceedings of AsianConference on Computer Vision, Springer, Berlin, Heidelberg 276-285

- [50] R.E.Bell, FortOntario, New York. On Point, 22(4)(2017)46-49.
- [51] NRIS(NationalRegisterInformationSystem),(2010) NationalRegisterof HistoricPlaces.National Park Service.
- [52] F.Tscheu, and D.Buhalis (2016) "Augmented reality at cultural heritage sites", Information and Communication Technologies in Tourism, 607-619.
- [53] T.Gjøsæter,AffordancesinMobileAugmentedRealityApplications.InternationalJournalof Interactive Mobile Technologies, 8(4) (2014) 45-55.
- [54] E. Cranmer, and T. Jung (2014) "Augmented reality (AR): Business models in urban cultural heritage tourist destinations", Proceedings of APacCHRIE Conference, Malaysia, 21-24.
- [55] J. R. Lewis (1995) "IBM computer usability satisfaction question naires: psychometric evaluation and instructions for use", International Journal of Human-Computer Interaction, 7(1)57-78.
- [56] N. Singh, S. Srivastava, and N. Sinha (2017) "Consumer preference and satisfaction of M-wallets: a study on North Indian consumers", International Journal of Bank Marketing.
- [57] A. Poushineh, and A. Z. Vasquez-Parraga (2017) "Discernible impact of augmented reality on retail customer's experience, satisfaction and willingness to buy", Journal of Retailing and Consumer Services, 34 229-234.
- [58] U. C. Pendit, S. B. Zaibon, and J. A. Bakar (2014) "Mobile augmented reality for enjoyable informal learning in cultural heritage site", International Journal of Computer Applications, 92(14) 19-26.
- [59] A. Härmä, J. Jakka, M. Tikander, M. Karjalainen, T. Lokki, J. Hiipakka, and G. Lorho, (2004) "Augmented reality audio for mobile and wearable appliances", Journal of the Audio Engineering Society, 52(6) 618-639.
- [60] S. H. Halili, (2019) "Technological advancements in education" 4.0. The Online Journal of Distance Education and e-Learning, 7(1) 63-69.

AUTHORS

BenjaminWilsonrecentlycompletedamastersdegreeinHuman-ComputerInteractionfromtheState University of New York at Oswego.

Joshua Hull recently completed a masters degree in Human-Computer Interaction from the State University of New York at Oswego.

Damian Schofield is a full professor and director of the Human-Computer Interaction mastersprogram at the State University of New York at Oswego

OPTICAL BRAILLE TRANSLATOR FOR SINHALA BRAILLE SYSTEM: PAPER COMMUNICATION TOOL BETWEEN VISION IMPAIRED AND SIGHTED PERSONS

T. D. S. H. Perera, and W. K. I. L. Wanniarachchi*

Department of Physics, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

ABSTRACT

In this paper we proposed a system; Optical Braille Translator (OBT), that identify Sinhala Braille characters in single sided Braille document and translates to Sinhala language. This system also capable of identifying Grade1 English Braille characters, numbers, capital letters and some words in Grade 2 English Braille system. Image processing techniques were used to developed the proposed system in MATLAB environment. The translated text displayed in a word application as the final outcome. Performance evaluation results reflect that the proposed method can recognize Braille characters and translated to user selected language either Sinhala or English efficiently, over 99% of accuracy.

KEYWORDS

Braille, Braille Recognition, Image Processing, Optical Recognition, Sinhala

Full Text: https://aircconline.com/ijma/V10N3/10318ijma03.pdf

Volume Link: https://www.airccse.org/journal/ijma current18.html

- [1] Department of Census and Statistics-Sri Lanka, "Characteristics of the disabled persons census of population and housing 2001," 2001. [Online]. Available:
- http://www.statistics.gov.lk/pophousat/des_chra.asp. [Accessed: 02-Mar-2016].
- [2] A. M. S. Al-salman, A. El-zaart, Y. Al-suhaibani, K. Al-hokail, and A. Gumaei, "Designing Braille Copier Based on Image Processing Techniques," Int. J. Soft Comput. Eng. ISSN, vol. 4, no. 5, pp. 62–69, 2014.
- [3] A. Mousa, H. Hiary, R. Alomari, and L. Alnemer, "Smart Braille System Recognizer," IJCSI Int. J. Comput. Sci. Issues, vol. 10, no. 6, pp. 52–60, 2013.
- [4] S. D. Al-Shamma and S. Fathi, "Arabic braille recognition and transcription into text and voice," 2010 5th Cairo Int. Biomed. Eng. Conf. CIBEC 2010, pp. 227–231, 2010.
- [5] J. Li, X. Yan, and D. Zhang, "Optical Braille recognition with haar wavelet features and SupportVector Machine," 2010 Int. Conf. Comput. Mechatronics, Control Electron. Eng. C. 2010, vol. 5, pp. 64–67, 2010.
- [6] M. Wajid, M. Waris Abdullah, and O. Farooq, "Imprinted Braille-character pattern recognition using image processing techniques," 2011 Int. Conf. Image Inf. Process., no. Iciip, pp. 1–5, 2011.
- [7] L. Wong, W. Abdulla, and S. Hussmann, "A software algorithm prototype for optical recognition of embossed braille," Proc. Int. Conf. Pattern Recognit., vol. 2, pp. 586–589, 2004.
- [8] K. P. S. G. Sugirtha and Dhanalakshmi.M, Transliteration of Braille Code into Text in English Language, vol. 2, no. 2. Springer Singapore, 2018.
- [9] E. Jacinto Gómez, H. Montiel Ariza, and F. H. Martínez Sarmiento, "There are very few work previously done for recognizing Sinhala Braille letters.," Eighth Int. Conf. Graph. Image Process. (ICGIP 2016), vol. 10225, no. Icgip 2016, p. 102250N, 2017.
- [10] S. H. Khaled and H. S. Abbas, "Braille Character Recognition Using Associtive Memory," Int. J. Eng. Res. Adv. Technol., no. 1, pp. 31–45, 2017.
- [11] S. Chatterjee, "Creation of an IT Enabled Sinhala to Braille Conversion Engine," Int. J. Comput. Appl. Eng. Sci., vol. IV, no. Ii, pp. 17–21, 2014.
- [12] N. M. T. De Silva and S. R. Liyanage, "Sinhala Braille Translator," Int. J. Trend Res. Dev., vol. 3, no. 4, pp. 380–384, 2016.
- [13] BANA MEMBERS, ENGLISH BRAILLE AMERICAN EDITION. Louisville: American Printing House for the Blind., 1994.
- [14] Braille Authority of North America, "Unified English Braille," 2016. [Online]. Available: http://www.brailleauthority.org/ueb.html. [Accessed: 21-Apr-2016].
- [15] C. Simpson, The Rules of Unified English Braille Edited by, 2nd ed. California: International Council on English Braille, 2013.
- [16] MathWorks, "Create COM server MATLAB actxserver MathWorks India," 2016. [Online]. Available:
 - http://in.mathworks.com/help/matlab/ref/actxserver.html?searchHighlight=actxserver&s_tid=doc_srchtitle&requestedDomain=in.mathworks.com. [Accessed: 16-May-2016].
- [17] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing. Delhi: Pearson Education (Singapore) Pte. Ltd, 2004
- [18] MathWorks, "Image Processing Toolbox Documentation MathWorks India," 2016. [Online]. Available: http://in.mathworks.com/help/images/functionlist.html. [Accessed: 02-Mar-2016].
- [19] MathWorks, "Radon transform MATLAB radon MathWorks India," 2016. [Online]. Available: https://in.mathworks.com/help/images/ref/radon.html. [Accessed: 02-Mar-2016].
- [20] Sinhalese Font, "Aa Amali Font Download? Free Sinhala Font," 2016. [Online]. Available: http://www.sinhalesefont.com/download.php?id=736725. [Accessed: 21-Apr-2016].
- [21] C. N. R. Kumar and S. Srinath, "A novel and efficient algorithm to recognize any universally accepted braille characters: A case with kannada language," Proc. 2014 5th Int. Conf. Signal Image Process. ICSIP 2014, pp. 292–296, 2014.
- [22] G. Morgavi and M. Morando, "A neural network hybrid model for an optical braille recognitor," Int. Conf. Signal, Speech ..., no. January 2002, 2002.
- [23] A. Antonacopoulos and D. Bridson, "A robust Braille recognition system," Doc. Anal. Syst. VI, pp. 533–545, 2004.

- [24] Wikipedia, "Bharati Braille," 2016. [Online]. Available: http://www.bpaindia.org/VIB ChapterVI.pdf. [Accessed: 02-Mar-2016].
- [25] Wiki 2, "Russian Braille chart Russian Braille Wikipedia Republished // WIKI 2," 2016. [Online]. Available:https://wiki2.org/en/Russian_Braille#/media/File:Russian_Braille_chart.jpg. [Accessed: 02-Mar-2016].

AUTHORS

- Dr. W. K. I. L. Wanniarachchi is working as a Senior Lecturer in the Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. He is a graduate in Bachelor of Science (Physics). He received his PhD in Physics from the Wayne State University, MI, USA. His research interests are on Computer Vision and Image Processing, Embedded Systems and Electronic Structure.
- T. D. S. H. Perera is working as a teaching assistant in the Department of Physics, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka. He received B.Sc. degree in Physics from the University of Sri Jayewardenepura, Sri Lanka in 2017. His research interest includes Image Processing and Optics.

SATELLITE IMAGE COMPRESSION ALGORITHM BASED ON THE FFT

Khaled Sahnoun and Noureddine Benabadji

University of Sciences and Technology of Oran- Algeria, department of physics Laboratory of Analysis and Application of Radiation

ABSTRACT

Image compression is minimizing the size in bytes of a graphics file without degrading the quality of the image to an unacceptable level ,the reduction in file size allows more images to be stored in a given amount of disk or memory space, it also reduces the time required for images to be sent over the ground This paper presents a new coding scheme for satellite images. In this study we apply the fast Fourier transform and the scalar quantization for standard LENA image and satellite image, The results obtained after the (SQ) phase are encoded using entropy encoding, after decompression, the results show that it is possible to achieve higher compression ratios, more than 78%, the results are discussed in the paper.

KEYWORDS

Encoding Entropy, Fast Fourier transform, Compression, SQ.

Full Text: https://aircconline.com/ijma/V6N1/6114ijma06.pdf

Volume Link: https://www.airccse.org/journal/ijma_current14.html

- [1] L. MOURAD "new approach for image compression based on wavelet and fractal for Meteosat image application" PhD Thesis University Mouloud Mammeri UMMTO Tizi-Ouzou Algeria 2011
- [2] STEVEN PIGEON "contributions to the data compression" PhD Thesis University of Montreal Canada 2001.
- [3] S. ARGENTIERI "Introduction to image compression" Institute Of Robotics And Intelligent Systems Paris 6 France 2009.
- [4] BENJAMIN HARBELOT YOAN "Project mathematical Fourier Transform" University of Burgundy France 2010.
- [5] E. FAVIER. "Image analysis and processing, principles of computer vision". ENISE France.
- [6] AMAAR, E.M. SAAD, I. ASHOUR AND M. ELZORKANY Electronics Department, National Telecommunication Institute (NTI) Image "Compression Using K-Space Transformation Technique" Recent Researches in Communications, Electronics, Signal Processing and Automatic Control 2012.
- [7] KUMAR, K.SINGH, R.KHANNA Dept. of ECE Thapar University, Patiala "Satellite Image Compression using Fractional Fourier Transform" International Journal of Computer Applications (0975 8887) Volume 50 No.3, July 2012.
- [8] MOULAY LAKHDAR, M. KANDOUCI, B. BELGHEIT "Image compression by wavelet transforms and adaptive vector quantization" University Of Bechar and Department of Electronic faculty of Science & Engineering University Djilali Liabes. IMAGE conference Biskra Algeria 2009.
- [9] E. FAVIER "image compression Part H" National School of engineers Saint-Etienne France 2008.

Comparison of Content Based Image Retrieval Systems Using Wavelet and Curvelet Transform

Suchismita Das, Shruti Garg, G. Sahoo

Department of Computer Science and Engineering Birla Institute of Technology, Mesra, Ranchi, India

ABSTRACT

The large numbers of images has posed increasing challenges to computer systems to store and manage data effectively and efficiently. This paper implements a CBIR system using different feature of images through four different methods, two were based on analysis of color feature and other two were based on analysis of combined color and texture feature using wavelet coefficients of an image. To extract color feature from an image, one of the standard ways i.e. color histogram was used in YCbCr color space and HSV color space. Daubechies' wavelet transformation and Symtel's wavelet transform were performed to extract the texture feature of an image. In this paper a color image retrieval system is illustrated, in which the novelty lies in the use of a fuzzy partition of the HSV color space and wavelet transformation of the fuzzified new image. To increase efficiency of the system finally an image retrieval method was proposed using curvelet transform of an image, which provides an opportunity to extract more accurate texture feature for image retrieval. After obtaining all experimental results, a comparative study was done. From the result it was inferred that curvelet based method gave a better performance as compared to other methods.

KEYWORDS

CBIR, wavelet transformation, Color histogram, YCbCr, HSV, curvelet transform

Full Text: https://aircconline.com/ijma/V4N4/4412ijma12.pdf

Volume Link: https://www.airccse.org/journal/ijma_current12.html

- [1] Sharma, N., Rawat, P., and Singh, J., Efficient CBIR Using Color Histogram Processing, Signal & Image Processing: An International Journal (SIPIJ) Vol.2, No.1, (March 2011).
- [2] Dubey,R., Choubey,R., Dubey,S., Efficient Image Mining using Multi Feature Content Based Image Retrieval System, Int Jr of Advanced Compute Engineering and Architecture Vol. 1, (June 2011).
- [3] Khan, W., Kumar, S., Gupta, N., Khan, N., A Proposed Method for Image Retrieval using Histogram values and Texture Descriptor Analysis, IJSCE, ISSN: 231-2307, Volume-I Issue-II, (May 2011).
- [4] Vadivel, A., Majumdar, A.K., and Sural, S., Image Retrieval using Wavelet Based Texture Features, International Conference on Communications, Devices and Intelligent Systems, (2004).
- [5] Brodatz,P., Textures: A Photographic Album for Artists and Designers, New York, Dover, (1966).
- [6] Vadivel, A., . Majumdar, A.K., and Sural, S., Characteristics of Weighted Feature Vector in ContentBased Image Retrieval Applications, (2000).
- [7] Suhasini, P.S., Krishna, K.S.R, Krishna, V.M., CBIR Using Color Histogram Processing, Journal Theoretical and Applied Information technology, (NWTIT), page 110-115.
- [8] Nachtegaela, M., Wekenb, D. V., Wittea, V. D., Schultea, S., M'elangea, T., Kerrea, E.E., Color Image Retrieval Using Fuzzy Similarity Measures And Fuzzy Partitions, ICIP, IEEE(2007).
- [9] Ni L. and Leng H C, Curvelet Transform and Its Application in Image Retrieval, 3rd International Symposium on Multispectral Image Processing and Pattern Recognition, Proceedings of SPIE, 5286,(2003).
- [10] Sumana, Islam M, Zhang D S and Lu G, Content Based Image Retrieval Using Curvelet Transform. In Proc. of IEEE International Workshop on Multimedia Signal Processing (MMSP08), Cairns, Queensland, Australia, ISBN 978-1-4244-2295-1:11-16,(2008).
- [11] Khan, W., Kumar, S., Gupta, N., Khan, N., Signature Based Approach For Image Retrieval Using Color Histogram And Wavelet Transform, International Journal of Soft Computing and Engineering (IJSCE), (March 2011).
- [12] Ali, A., Murtaza, S., Malik, A.S., Content Based Image Retrieval Using Daubechies Wavelet Transform, Proceedings of the 2nd National Workshop on Trends in Information Technology, (2003).
- [13] Sharma, G., Digital color imaging handbook, CRC Press, (2003).
- [14] Russ, J.C., The image processing handbook, CRC Press, (1999).
- [15] Zadeh, L.A., Fuzzy sets, Information Control, Vol. 8, pp. 338–353, (1965).
- [16] Fuller, R., On product-sum of triangular fuzzy numbers, Fuzzy Sets and Systems, Vol. 41, No. 1, pp. 83–87, (1991).

LOGO RECOGNITION USING TEXTUAL AND VISUAL SEARCH

Ximing Hou^{1,2} and Hao Shi²

¹School of Computer Science, College of Engineering and Computer Science, Australian National University, Canberra, Australia
²School of Engineering and Science, Victoria University, Melbourne, Australia

ABSTRACT

The amount of digital data transmitting via internet has reached an enormous level. In order to conduct efficient web data analysis, effective web mining tools are needed. Logos, which represent companies' brands, are highly regarded in a business world. These logos embedded in ordinary pictures could give an indication of popularity of the companies and their products in a region. Therefore, it is imperative to build a computer system to extract company logos from these pictures. In this paper, a Logo on Map (LoM) system is proposed, which consists of three modules: picture extraction module (PEM), logo matching module (LMM) and web mapping module (WMM). Only the first two modules are covered in this paper. The PEM is based on a keyword textual search while the LMM is a visual search using SIFT (ScaleInvariant Feature Transform) algorithm. The three experiments are conducted using different sets of pictures extracted from the Flickr® website. The experimental results have proven that visual search is more accurate than textual search and also demonstrated that LoM could be used to discover hidden knowledge beyond logos.

KEYWORDS

Web Mining, Logo, Flickr API, Textual Search, SIFT, Visual Search, LoM (Logo on Map).

Full Text: https://aircconline.com/ijma/V4N5/4512ijma04.pdf

Volume Link: https://www.airccse.org/journal/ijma_current12.html

- [1] Trent Nouveau, "Digital Data to Earth: You have run out of memory", 3 May 2010, http://www.tgdaily.com/hardware-features/49611-digital-data-to-earth-you-have-run-out-of-memory [2] Eric Schonfeld, "Who Has The Most Photos Of Them All? Hint: It Is Not Facebook", 7 April, 2009, http://techcrunch.com/2009/04/07/who-has-the-most-photos-of-them-all-hint-it-is-not-facebook/
- [3] Pingdom.com, "Internet 2011 in numbers", January 17th, 2012, http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
- [4] Screenshot of tags on del.icio.us in 2004 and Screenshot of a tag page on del.icio.us, also in 2004, both published by Joshua Schachter on July 9, 2007
- [5] Flickr ® (2012), http://www.flickr.com.
- [6] Lowe, D. G., "Object recognition from local scale-invariant features", Proceedings of International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 1150-1157.
- [7] Lukas Mach, "Sift keypoints filtering.jpg", 13 February 2008, http://en.wikipedia.org/wiki/File:Sift_keypoints_filtering.jpg
- [8] Lowe, D. G., "Distinctive Image Features from Scale-Invariant Keypoints", International Journal of Computer Vision, 60(2): 91-110 (2004).
- [9] Ximing Hou, "Visual matching on user-generated photo collections", Subject Report, 33 pages, School of Computer Science, College of Engineering and Computer Science, Australian National University, June, 2011.

AUTHORS

Ximing Hou completed his Master of Computing at Australian National University in 2011 and obtained his Bachelor of Computer Science degree at Victoria University in 2008 and Bachelor of Computer Science in Henan University, China in 2010. His research interests include Data Mining, Pattern Recognition and Geographical Information.

Hao Shi is an Associate Professor in School of Engineering and Science at Victoria University, Australia. She completed her PhD in the area of Computer Engineering at University of Wollongong and obtained her Bachelor of Engineering degree at Shanghai Jiao Tong University, China. She has been actively engaged in R&D and external consultancy activities. Her research interests include Location-Based Services, Web Services, Computer/Robotics Vision, Visual Communications, Internet and Multimedia Technologies, and Data Mining.

REVIEW OF BLACK HOLE AND GREY HOLE ATTACK

Rupinder Kaur¹ and Parminder Singh²

¹Student, IT Deptt, CEC, Landran, Mohali, India ²Assit.Professor, IT Deptt, CEC, Landran, Mohali, India

ABSTRACT

Black hole and Grey hole attack is most happening attacks in Mesh networks. Mesh networks means nonstatic networks with making loops of networks with the help of active hotspots. In Wireless networks all the communication between the nodes is happening wirelessly and the nodes are so much resource constraint that it is difficult to employ any security solutions of other ad hoc networks. So they are attacked by malicious nodes. In black hole attack the attacker windup all the information and dropped it. In black hole attack, the series of RREQ (route request) and RREP (route reply) follows the smallest way of networking communication. The fault node always transmit RREP message as it receives RREQ, while managing the receivers sequence number. By the help of fault node packets are dropped. Sometimes faultnode is authorised and otherwise it is unauthorised. Black hole attack is type of routing attack and can bring harm to whole network. Grey hole attack is the kind of denial of service attack. In this attack, the router which is mesh behave just not well and a subset of packets are forward and handle by receiver but leave by others. The presences of these attackers are hard to detect in wireless networks because over the wireless link the packets are lost due to bad channel quality. This paper deals with the study of analysis of delay occurs by these attack in Wireless Mesh networks and its types and also discuss about previous study by which we get idea about attack occurs in networks and also study various techniques to detect and prevent network from black hole and grey hole attack. Then we discuss about their result by using simulator OPNET.

KEYWORDS

Black hole attack, Grey hole attack, MRP, OLSR, RREQ, RREP, RERR, OPNET.

Full Text: https://aircconline.com/ijma/V6N6/6614ijma03.pdf

Volume Link: https://www.airccse.org/journal/ijma_current14.html

- [1] A.Patcha, A.Mishra, "Collaborative Security architecture of black hole attack prevention in mobile ad hoc networks[C]",Radio and Wireless Conference,2003,pp.75-78
- [2] B. Sun, Y. Guan, J. Chen ,U.W Pooch, "Detecting Black hole attack In Mobile Ad-hoc Netwoks[C]".5th Europeen Personel Mobile Communications Conference, 2003, pp. 490-495.
- [3] C. Karlof, D.Wagner, "Secure routing in wireless sensor networks: Attacks and countermeasures, Special Issue on Sensor Network Applications and Protocols", vol 1 (2-3), 2003,pp.1293 –1303
- [4] Dr. A. A. Gurjar, Professor, Department Of Electronics & Telecommunication, Sipna's C.O.E.T, Amravat and A. A. Dande, Second Year (M.E.), Computer Engineering, Sipna's C.O.E.T, Amravat "Black Hole Attack in Manet's: A Review Study" International Journal of IT, Engineering and Applied Sciences Research (IJIEASR) ISSN: 2319-4413 Volume 2, No. 3, March 2013,pp. 12-14.
- [5] D.Djen, L. Khelladi, and A.N. Badache, "A survey of of Security issues in Mobile Ad Hoc Network," Communication Surveys & Tutorials, IEEE,vol. 7 no. 4, pp. 2-28,2005.
- [6] D.Boneh, C.Gentry, B.Lynn, H.Shachem, "Aggregate and Verifiably Encrypted Signature from Bilineer Maps ", Advances in Cryptology-EUROCRYPT'03, LNCS 2656, Berlin, Spinger-Veralg, 2003, pp. 416-432.
- [7] Dr.Parminder Singh, Damanpreet Kaur," Approach to Improve the Performance of WSN during Wormhole Attack using Promiscuous Mode", volume 73, international journal of computer application, july 2013, pp 26-29.
- [8] Elizabeth M. Royer, and Chai-Keong Toh, "A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks," IEEE Personal Communications, April 1999, pp. 46-55.
- [9] F.Stanjano, R.Anderson, "The Resurrecting Duckling: Security Issues for Ubiquitous Computing," Vol. 35, Apr, 2002, pp. 22-26.
- [10] Hesiri Itserasinghe and Huirong Fu,"Preventing Cooperative Black Hole Attacks in Mobile Ad Hoc Networks", International Journal of Software Engineering and Its Applications, Vol. 2, No. 3, July, 2008,pp.39-54.
- [11] H. Deng, W. Li, and D. P. Agrawal. "Routing Security in Adhoc Networks." In: IEEE Communications Magazine, Vol. 40, No. 10, Oct. 2002,pp. 70-75.
- [12] Hongmei Deng, Itsi Li, and Dharma P. Agrawal, "Routing Security in Wireless Ad Hoc Network," IEEE Communications Magzine, vol. 40, no. 10, October 2002,pp70-75.
- [13] J. Cai, P. Yi, J. Chen, Z. Wang, N. Liu, An adaptive approach to detecting black and Grey hole attacks in ad hoc network, in: 4th IEEE International Conference on Advanced Information networking and Applications, IEEE Computer Society, 2010, pp.775–780.
- [14] JiItsn CAI, Ping YI, Jialin CHEN, Zhiyang WANG, Ning LIU, "An adaptive approach to detecting black and Grey hole attacks in Adhoc networks",24th IEEE International Conference on Advanced Information networking and application,2010,pp.775-891.1.
- [15] K. S. Win, "Analysis of detecting wormhole attack in wireless networks," vol. 48, 2008, pp. 422–428.
- [16] Latha Tamilselvan, V Sankaranarayanan, "Prevention Of Blackhole Attack in MANET", In proceeding of 3nd International Conference on Wireless Broadband and Ultra Wideband Communication, Aug 2007, pp.21-21
- [17] M. A. Shurman, S. M. Yoo, and S. Park, "Black hole attackin wireless ad hoc networks," in ACM 42nd Southeast Conference (ACMSE'04), Apr. 2004, pp. 96-97.
- [18] N. H. Mistry, D. C. Jinwala and M. A. Zaveri, "MOSAODV: Solution to Secure AODV against Black hole Attack", (IJCNS) International Journal of Computer and Network Security, Vol. 1, No. 3, December 2009.pp.42-45.
- [19] O. Kachirski and R. Guha, "Effective intrusion detection using multiple sensors in wireless ad hoc networks", In Proceedings of the 36th Hawaii International Conference on System Sciences, 2003, pp. 57-61.
- [20] R.Agrawal, R. Tripathi, S. Tiwari, "Performance evaluation and comparison of aodv and dsr under adversarial environment", International Conference on Computational Intelligence and Communication Networks, IEEE Computer Society, 2011, pp.596–600.
- [21] R.H.Jhaveri, S.J.Patel, D. Jinwala, "A novel approach for Greyhole and blackhole attacks in mobile ad hoc networks", Second International Conference on Advanced Computing and

- Communication Technologies, IEEE Computer Society, 2012, pp. 556–560.
- [22] Satoshi Kurosawa, Hidehisa Nakayama, Nei Kato, Abbas Jamalipour, and Yoshiaki Nemoto. "Detecting Blackhole Attack on AODV based Mobile Ad hoc networks by Dynamic Learning Method". International Journal of Network Security, Vol.5, No.3,Nov 2007, pp.338–346.
- [23] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, "Energy efficient communication protocol for wireless microsensor networks", IEEE Transactions on Wireless Communications, vol 1 (4), 2002, pp. 660–670.
- [24] X.P.Geo,W.Chen,"A Novel Grey hole Attack Detection Scheme for Mobile Adhoc Networks[C]",IFIP International Conference On Network and Parallel Computin Workshop,2007,pp. 209-214.
- [25] Xiaoyan Hong, Kaixin Xu, and Mario Gerla, "Scalable Routing Protocols for Mobile Ad hoc Networks," IEEE Network, Vol. 16(4), July/August 2002, pp. 11-21.
- [26] Y. A. Huang and W. Lee, "Attack analysis and detection for ad hoc routing protocols," in The 7th International Symposium on Recent Advances in Intrusion Detection (RAID'04), pp. 125-145, French Riviera, Sept. 2004.
- [27] Y. Zou, K. Chakrabarty, "Sensor deployment and target localization based on virtual forces", TItsnty- Second Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 2, IEEE Computer Society, 2003, pp. 1293–1303.
- [28] Y. Law, P. J. Havinga, "how to secure sensor network", International Conference on Sensor Networks and Information Processing, IEEE Computer Society, 2010, pp. 89–95.
- [29] Y.-C. Hu, D.B. Johnson, and A. Perrig, "SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad hoc Networks," Proc.4th IEEE Workshop on Mobile Computing Systems and Applications, Callicoon, NY, June 2002, pp. 3-13.