November 2025: Top 10 Read Articles in International Journal of Artificial Intelligence & Applications

International Journal of Artificial Intelligence & Applications (IJAIA)

http://www.airccse.org/journal/ijaia/ijaia.html

ISSN: 0975-900X (Online); 0976-2191 (Print)

Contact Us: <u>ijaiajournal@airccse.org</u>

PREDICTING STUDENT ACADEMIC PERFORMANCE IN BLENDED LEARNING USING ARTIFICIAL NEURAL NETWORKS

Nick Z. Zacharis

Department of Computer Systems Engineering, Technological Educational Institute of Piraeus, Athens, Greece

ABSTRACT

Along with the spreading of online education, the importance of active support of students involved in online learning processes has grown. The application of artificial intelligence in education allows instructors to analyze data extracted from university servers, identify patterns of student behavior and develop interventions for struggling students. This study used student data stored in a Moodle server and predicted student success in course, based on four learning activities - communication via emails, collaborative content creation with wiki, content interaction measured by files viewed and self-evaluation through online quizzes. Next, a model based on the Multi-Layer Perceptron Neural Network was trained to predict student performance on a blended learning course environment. The model predicted the performance of students with correct classification rate, CCR, of 98.3%.

KEYWORDS

Artificial Neural Networks, Blended Learning, Student Achievement, Learning Analytics, Moodle Data

For More Details: https://aircconline.com/ijaia/V7N5/7516ijaia02.pdf

Volume Link: http://www.airccse.org/journal/ijaia/current2016.html

- [1] Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an "early warning system" for educators: A proof of concept. Computers & Education, 54(2), 588–599.
- [2] Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. Internet and Higher Education, 27, 44–53.
- [3] Strang, D. K. (2016). Can online student performance be forecasted by learning analytics? International Journal of Technology Enhanced Learning, 8(1), 26-47.
- [4] Sabourin, J., Rowe, J., Mott, B., Lester, J. (2011). When Off-Task in On-Task: The Affective Role of Off-Task Behavior in Narrative-Centered Learning Environments. Proceedings of the 15th International Conference on Artificial Intelligence in Education, 534-536.
- [5] Baker, R.S.J.d., Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, 1(1), 3-17.
- [6] Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V. and Loumos, V. (2009), Early and dynamic student achievement prediction in e-learning courses using neural networks. J. Am. Soc. Inf. Sci., 60: 372–380. doi: 10.1002/asi.20970
- [7] Paliwal, M., & Kumar, U. A. (2009). A study of academic performance of business school graduates using neural network and statistical techniques. Expert Systems with Applications, 36(4), 7865–7872.
- [8] Jayne C, Lanitis A, Christodoulou C (2011). Neural network methods for one-to-many multi-valued mapping problems. Neural Comput Appl 20(6):775–785
- [9] Kanakana, G.M., Olanrewaju, A.O. (2011). Predicting student performance in engineering education using an artificial neural network at Tshwane university of technology. Proceedings of the International Conference on Industrial Engineering, Systems Engineering and Engineering Management for Sustainable Global Development, Stellenbosch, South Africa, pp. 1–7.
- [10] Shahiri, A.M., Husain, W., Rashid, A.N. (2015). A review on predicting student's performance using data mining techniques. Procedia Computer Science, 72, 414-422.
- [11] McClelland, J.L., Rumelhart, D.E., and Hinton, G.E. (1986). The appeal of parallel distributed processing, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition Foundations, Vol.1, MIT Press, Cambridge, pp.3-44.
- [12] Leverington, D. (2009). A Basic Introduction to Feedforward Backpropagation Neural Networks. http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html
- [13] Rojas Raúl (1996). Neural Networks: A Systematic Introduction, Springer-Verlag, Berlin, New-York.
- [14] Marwala, T. (2010). Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics, Springer Publishing Company, Inc.
- [15] IBM (2016). Knowledge Center. http://goo.gl/SuuMHu
- [16] Møller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6 (4),525–533.

HARDWARE DESIGN FOR MACHINE LEARNING

Pooja Jawandhiya

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

ABSTRACT

Things like growing volumes and varieties of available data, cheaper and more powerful computational processing, data storage and large-value predictions that can guide better decisions and smart actions in real time without human intervention are playing critical role in this age. All of these require models that can automatically analyse large complex data and deliver quick accurate results – even on a very large scale. Machine learning plays a significant role in developing these models. The applications of machine learning range from speech and object recognition to analysis and prediction of finance markets. Artificial Neural Network is one of the important algorithms of machine learning that is inspired by the structure and functional aspects of the biological neural networks. In this paper, we discuss the purpose, representation and classification methods for developing hardware for machine learning with the main focus on neural networks. This paper also presents the requirements, design issues and optimization techniques for building hardware architecture of neural networks.

KEYWORDS

Artificial intelligence (AI), application specific integrated circuit (ASIC), artificial neural network (ANN), central processing unit (CPU), field programmable gate array (FPGA), graphics processing unit (GPU), machine learning (ML), neurochip

For More Details: https://aircconline.com/ijaia/V9N1/9118ijaia05.pdf

Volume Link: http://www.airccse.org/journal/ijaia/current2018.html

- [1] Jacques Bughin et. al., "How Artificial Intelligence Can Deliver Real Value to Companies", McKinsey. [Online] Available: https://www.mckinsey.com/business-functions/mckinsey-analytics/ our-insights/how-artificial-intelligence-can-deliver-real-value-to-companies.
- [2] Kevin Fogarty, (2017, Nov. 9), "The next Phase of Machine Learning", Semiconductor Engineering. [Online] Available: https://semiengineering.com/the-next-phase-of-machine-learning/.
- [3] Eduard Sackinger et. al., "Application of the ANNA Neural Network Chip to High-Speed Character Recognition", IEEE Transactions on Neural Netsworks, Vol. 3, No. 3, May 1992.
- [4] Patrick Bourke, Rob A. Rutenbar, "A High-Performance Hardware Speech Recognition System for Mobile Applications", 2005.
- [5] Sergiu Nedevschi, Rabin K. Patra, Eric A. Brewer, "Hardware Speech Recognition for User Interfaces in Low Cost, Low Power Devices", Design Automation Conference, 2005.
- [6] B.E. Boser et al, "Hardware requirements for neural network pattern classifiers", IEEE Micro (Volume: 12, Issue: 1, Feb. 1992), pp. 32-40.
- [7] Bernard Marr, (2017, August 8). Forbes [Online]. Available: https://www.forbes.com/sites/bernardmarr/2017/08/08/the-amazing-ways-how-google-uses-deep-learning-ai/#711a9ea43204.
- [8] Ryan Whitwam (2017, October 16). ExtremeTech [Online]. Available: https://www.extremetech.com/extreme/257110-deepminds-wavenet-voice-synthesizer-live-google-assistant.
- [9] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, Zhengdong Zhang, "Hardware for Machine Learning: Challenges and Opportunities", CICC 2017.
- [10] R. Rojas, "Neural Networks", Springer-Verlag, Berlin, 1996.
- [11] Liao, Yihua, "Neural networks in hardware: A survey", Davis, CA, 2017.
- [12] Jihan Zhu and Peter Sutton, "FPGA Implementations of Neural Networks A Survey of a Decade of Progress", Y. K. Cheung P., Constantinides G.A. (eds) Field Programmable Logic and Application, FPL 2003, Lecture Notes in Computer Science, vol. 2778. Springer, Berlin, Heidelberg.
- [13] "Scikit-learn" [Online] Available: http://scikit-learn.org/stable/, Accessed on: Dec. 19, 2017.
- [14] "Theano" [Online] Available: http://deeplearning.net/software/theano/, Accessed on: Dec. 19, 2017.
- [15] "Apache Spark MLlib" [Online] Available: https://spark.apache.org/mllib/, Accessed on: Dec. 19, 2017.
- [16] "H2O" [Online] Available: https://www.h2o.ai/, Accessed on: Dec. 19, 2017.
- [17] "Tensorflow" [Online] Available: https://www.tensorflow.org/, Accessed on: Dec. 19, 2017.
- [18] Arpan Chakraborty, (2016, April 7). Udacity [Online]. Available: https://blog.udacity.com/2016/04/5-skills-you-need-to-become-a-machine-learning-engineer.html.
- [19] McCartor, H., 1991, "A Highly Parallel Digital Architecture for Neural Network Emulation", Delgado-Frias, J. G. and Moore, W. R. (eds.), VLSI for Artificial Intelligence and Neural Networks, pp. 357-366, Plenum Press, New York, 1991.
- [20] Lindsey, C. S., Lindblad, Th., Sekniaidze, G., Minerskjold, M., Szekely, S., and Eide, A., "Experience with the IBM ZISC Neural Network Chip". Proceedings of 3rd Int. Workshop on Software

- Engineering, Artificial Intelligence, and Expert Systems, for High Energy and Nuclear Physics, Pisa, Italy, April 3-8, 1995.
- [21] Nvidia, "Why GPUs?". [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.
- [22] Holt, J. and Hwang, J., "Finite Precision Error Analysis of the Neural Network Hardware Implementations". IEEE Trans. on Computers, 42:281-290, 1993.
- [23] Dany Bradbury, (2017, July 24), "What sort of silicon brain do you need for artificial intelligence?", The Register. [Online]. Available: https://www.theregister.co.uk/2017/07/24/ai_hardware_development_plans/.
- [24] Thiran, P., Peiris, V., Heim, P. and Hochet, B., "Quantization Effects in Digitally Behaving Circuit Implementations of Kohonen Networks". IEEE Trans. on Neural Networks, 5(3):450-458, 1994.
- [25] Strey, A. and Avellana, N., "A New Concept for Parallel Neurocomputer Architectures". Proceedings of the Euro-Par'96 Conference, Lyon (France), Springer LNCS 1124, Berlin, 470-477, 1996.
- [26] E. Won, "A hardware implementation of artificial neural networks using field programmable gate arrays", Elsevier, Nuclear Instruments and Methods in Physics Research A 581 (2007) pp. 816–820, 2007.
- [27] Marchesi, M., et al., "Fast neural networks without multipliers". IEEE Transactions on Neural Networks, 1993. 4(1): p. 53-62.
- [28] Linda Barney, (2017, March 21), "Can FPGAs beat GPUs in accelerating next-generation deep learning?", The Next Platform. [Online]. Available: https://www.nextplatform.com/2017/03/21/canfpgas-beat-gpus-accelerating-next-generation-deep-learning/.
- [29] Andre Xian Ming Chang, Eugenio Culurciello, "Hardware accelerators for Recurrent Neural Networks on FPGA", Circuits and Systems (ISCAS), 2017 IEEE International Symposium, ISSN: 2379-447X, 2017.
- [30] Chao Wang, Qi Yu, Lei Gong, Xi Li, Yuan Xie, Xuehai Zhou, "DLAU: A Scalable Deep Learning Accelerator Unit on FPGA", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (Volume: 36, Issue: 3, March 2017), pp. 513 517.
- [31] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, BrucekKhailany, Joel Emer, Stephen W. Keckler, William J. Dally, "SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks", ISCA'17, Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 27-40.
- [32] Yijin Guan, Zhihang Yuan, Guangyu Sun, Jason Cong, "FPGA-based Accelerator for Long Short-Term Memory Recurrent Neural Networks", Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific, ISSN: 2153-697X, 2017.
- [33] Krste Asanovic, "Programmable Neurocomputing", MIT Laboratory for Computer Science, Cambridge, MA 02139. [Online]. Available: https://people.eecs.berkeley.edu/~krste/papers/neurocomputing.pdf, Accessed on: Sept. 26, 2017.
- [34] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, and J. Beer, "The Ring Array Processor (RAP): A multiprocessing peripheral for connectionist applications", Journal of Parallel and Distributed Computing, 14:248–259, April 1992.
- [35] U. A. Muller, B. Baumie, P. Kohler, A. Gunzinger, and W. Guggenbuhl, "Achieving supercomputer performance for neural net simulation with an array of digital signal processors", IEEE Micro, 12(5):55–64, October 1992.
- [36] R. Means and L. Lisenbee, "Extensible linear floating-point SIMD neurocomputer array processor", Proceedings of the International Joint Conference on Neural Networks, pages I–587–592, New York,

- 1991. IEEE Press.
- [37] Ramacher, U., Raab, W., Anlauf, J., Hachmann, U., Beichter, J., Bruls, N., Webeling, M. and Sicheneder, E., 1993, "Multiprocessor and Memory Architecture of the Neurocomputers SYNAPSE-1", Proceedings of the 3rd International Conference on Microelectronics for Neural Networks (MicroNeuro), pp. 227-231, 1993.
- [38] J. Wawrzynek, K. Asanovi´c, B. Kingsbury, J. Beck, D. Johnson, and N. Morgan, "Spert-II: A vector microprocessor syste", IEEE Computer, 29(3):79–86, March 1996.
- [39] M. Duranto, "Image processing by neural networks", IEEE Micro, 16(5):12–19, October 1996.
- [40] Fernando Morgado Dias, Ana Antunes, Alexandre Manuel Mota, "Commercial Hardware for Artificial Neural Networks: A Survey", IFAC Proceedings Volumes, Vol. 36, Issue 12, pp.189-196, 2003.
- [41] Jung-Wook Cho and Soo-Young Lee, "Active Noise Cancelling using Analog NeuroChip with On-Chip Learning Capability", NIPS Proceedings, 1998.
- [42] Mark Holler, Simon Tam, Hernan Castro, Ronald Benson, "An Electrically Trainable Artificial Neural Network (ETANN) with 10240 "Floating Gate" Synapses", Neural Networks, 1989, IJCNN., International Joint Conference, 1989.
- [43] Takeshi Kamio, Haruyasu Adachi, Hiroshi Ninomiya, Hideki Asai, "A Design Method of DWT Analog Neuro Chip for VLSI Implementation", Instrumentation and Measurement Technology Conference, 1997. IMTC/97. Proceedings. Sensing, Processing, Networking., IEEE, 1997.
- [44] Daiki Masumoto, Hiroki Ichiki, Hideki Yoshizawa, Hideki Kato, Kazuo Asakawa, "An Analog Neurochip and Its Applications to Multilayered Artificial Neural Networks", TOC, vol. 74, issue 9, pp. 92-103, 1991.
- [45] Wikichip, "ETANN Intel". [Online] Available: https://en.wikichip.org/wiki/intel/etann, Accessed on: Oct. 19, 2017.
- [46] Eduard Sackinger, Bernhard E. Boser, Lawrence D. Jackel, "A Neurocomputer Board Based on the ANNA Neural Network Chip", Advances in Neural Information Processing Systems 4 (NIPS 1994), pp. 773-780.
- [47] Alan F. Murray et. al., "Pulse Stream VLSI Neural Networks", IEEE Macro, Vol. 14, Issue 3, June 1994, p. 29-39.
- [48] Karl Freund, (2017, March 3), "A machine learning landscape: where AMD, Intel, Nvidia, Qualcomm and Xilinx AI engines live", Forbes. [Online]. Available: https://www.forbes.com/sites/moorinsights/2017/03/03/a-machine-learning-landscape-where-amd-intel-nvidia-qualcomm-and-xilinx-ai-engines-live/#4436108a742f.
- [49] Gaurav Nakhare, (2017, July 31), "Hardware options for machine/deep learning", MS&E 238 Blog. [Online]. Available: https://mse238blog.stanford.edu/2017/07/gnakhare/hardware-options-for-machinedeep-learning/.
- [50] Cade Metz, (2016, October 26), "How AI is shaking up the chip market". [Online]. Available: https://www.wired.com/2016/10/ai-changing-market-computer-chips/.
- [51] "Intel Xeon Phi Processors". [Online] Available: https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html, Accessed on: Dec. 19, 2017.
- [52] Nvidia, "Why GPUs?". [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.
- [53] Kevin Krewell, (2009, December 16), "What's the difference between a CPU and a GPU?". Nvivdia [Online]. Available: https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-

- and-a-gpu/.
- [54] William Dally, (2015, July 12), "High performance hardware for machine learning", NIPS Tutorial. [Online]. Available: https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf.
- [55] Nvidia, "Why GPUs?". [Online] Available: http://www.fmslib.com/mkt/gpus.html, Accessed on: Dec. 20, 2017.
- [56] Nvidia NVLink high-speed interconnect", Nvidia. [Online]. Available: http://www.nvidia.com/object/nvlink.html. Accessed on: Sept. 29, 2017.
- [57] Nvidia, "Tegra Processors". [Online] Available: http://www.nvidia.com/object/tegra-x1-processor.html, Accessed on: Dec. 20, 2017.
- [58] Nuno Edgar Nunes Fernandes, (2017, April 3), "FPGA chips will be the hardware future for deep learning and AI", Wordpress. [Online]. Available: https://theintelligenceofinformation.wordpress.com/2017/04/03/fpga-chips-will-be-the-hardware-future-for-deep-leaning-and-ai/.
- [59] Nvidia, "Nvidia Introduces Nexus, The Industry's First Integrated GPU/CPU Environment for Developers Working with Microsoft Visual Studio". [Online] Available: http://www.nvidia.com/object/pr_nexus_093009.html.
- [60] Kishore Kothapalli et. al., "CPU and/or GPU: Revisiting the GPU Vs. CPU Myth". [Online] Available: https://arxiv.org/pdf/1303.2171.pdf.
- [61] William J., (2017, July 24), "Machine Learning on Intel FPGAs", Intel. [Online]. Available: https://software.intel.com/en-us/articles/machine-learning-on-intel-fpgas.
- [62] Utku Aydonat, Shane O'Connell, Davor Capalija, Andrew C. Ling, Gordon R. Chiu, "An OpenCL Deep Learning Accelerator on Arria 10", 2017.
- [63] Suhap Sahin, Yasar Becerikli, Suleyman Yazici, "Neural Network Implementation in Hardware Using FPGAs", Neural Network Implementation in Hardware Using FPGAs. In: King I., Wang J., Chan LW., Wang D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol. 4234, Springer, Berlin, Heidelberg.
- [64] Cox, C.E. and E. Blanz, "GangLion a fast field-programmable gate array implementation of a connectionist classifier", IEEE Journal of Solid-State Circuits, 1992. 28(3): pp. 288-299.
- [65] Pedro Ferreira, Pedro Ribeiro, Ana Antunes, Fernando Morgado Dias, "Artificial Neural Networks Processor a Hardware Implementation using a FPGA", Becker J., Platzner M., Vernalde S. (eds) Field Programmable Logic and Application. FPL 2004. Lecture Notes in Computer Science, vol. 3203, Springer, Berlin, Heidelberg.
- [66] Andrei Dinu, Marcian N. Cirstea, and Silvia E. Cirstea, "Direct Neural-Network Hardware-Implementation Algorithm", IEEE Transactions on Industrial Electronics (vol. 57, Issue: 5, May 2010).
- [67] Seul Jung, Sung su Kim, "Hardware Implementation of a Real-Time Neural Network Controller with a DSP and an FPGA for Nonlinear Systems", IEEE Transactions on Industrial Electronics, vol. 54, No. 1, February 2007.
- [68] Intel FPGA and SoC, "Arria 10". [Online] Available: https://www.altera.com/products/fpga/arria-series/arria-10/overview.html.
- [69] Intel FPGA and SoC, "Stratix 10". [Online] Available: https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html.
- [70] Eriko Nurvitadhi et. al., "Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC", IEEE International Conference on Field-Programmable Technology, 7-9 Dec., 2016.

- [71] Nvidia, "Jetson Automotive Development Platform". [Online] Available: http://www.nvidia.in/object/jetson-pro-automotive-development-platform-in.html.
- [72] Nvidia, "Nvidia Drive PX". [Online] Available: https://www.nvidia.com/en-us/self-driving-cars/drive-px/.
- [73] Nicole Hemsoth (2017, April 5), "First In-depth Look at Google's TPU Architecture". [Online] Available: https://www.nextplatform.com/2017/04/05/first-depth-look-googles-tpu-architecture/.
- [74] Intel Nervana, [Online] Available: https://www.intelnervana.com/.
- [75] J. Zhang, Z. Wang, N. Verma, "A machine-learning classifier implemented in a standard 6T SRAM array,", Sym. on VLSI, 2016.
- [76] Z. Wang, R. Schapire, N. Verma, "Error-adaptive classifier boosting (EACB): Exploiting data-driven training for highly fault-tolerant hardware,", ICASSP, 2014.
- [77] B. Murmann, D. Bankman, E. Chai, D. Miyashita, L. Yang, "Mixed-signal circuits for embedded machine-learning applications", Signals, Systems and Computers, 49th Asilomar Conference, 2015.
- [78] Pai-Yu Chen, Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Binbin Lin, Jieping Ye, Sarma Vrudhula, Jae-sun Seo, Yu Cao, Shimeng Yu, "Technology-design co-optimization of resistive cross-point array for accelerating learning algorithms on chip", Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015.
- [79] Junjie Lu, Steven Young, Itamar Arel, Jeremy Holleman, "A 1 TOPS/W Analog Deep Machine-Learning Engine with Floating-Gate Storage in 0.13 μm CMOS", IEEE Journal of Solid-State Circuits (Volume: 50, Issue: 1, Jan. 2015).
- [80] Y. Chen and et al., "DaDianNao: A Machine-Learning Supercomputer,", MICRO, 2014.
- [81] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, V. Srikumar, "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars,", ISCA, 2016.
- [82] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, "PRIME: A Novel Processing-In-Memory Architecture for Neural Network Computation in ReRAM-based Main Memory,", ISCA, 2016.
- [83] Takashi Morie and Yoshihito Amemiya, "An All-Analog Expandable Neural Network LSI with On-Chip Backpropagation Learning", IEEE Journal of Solid-State Circuits, Vol. 29, No. 9, September, 1994.
- [84] Arindam Basu, SunShuo, HongmingZhou, MengHiotLim, Guang-BinHuang, "Silicon spiking neurons for hardware implementation of extreme learning machines", Neurocomputing, 102, pp.125–134, 2013.
- [85] Jae-sun Seo et al, "A 45nm CMOS Neuromorphic Chip with a Scalable Architecture for Learning in Networks of Spiking Neurons", Custom Integrated Circuits Conference (CICC), 2011 IEEE.
- [86] Yu-Hsin Chen, Joel Emer, Vivienne Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks", Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium, 2016, ISSN: 1063-6897.
- [87] Joe Osborne, (2016, Aug. 22), "Google's Tensor Processing Unit Explained: This is What the Future of Computing Looks Like". Techradar [Online] Available: http://www.techradar.com/news/computing-components/processors/google-s-tensor-processing-unit-computing-looks-like-1326915.
- [88] Kaz Sato, (2017, May 12), "An In-depth Look at Google's First Tensor Processing Unit (TPU)",

Google Cloud Platform. [Online] Available: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu.

[89] Google AI, "Cloud TPUs". [Online] Available: https://ai.google/tools/cloud-tpus/.

AUTHOR

Pooja Jawandhiya was born in Nagpur, India on May 2, 1995. She received the Bachelor of Engineering degree in Electronics and Telecommunication from University of Mumbai in June, 2017. Currently, she is a student in Nanyang Technological University, Singapore and is pursuing Master of Science (Electronics) from the School of Electrical and Electronic Engineering.

AUTOMATIC TUNING OF PROPORTIONAL— INTEGRAL—DERIVATIVE (PID) CONTROLLER USING PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

S. J. Bassi¹, M. K. Mishra² and E. E. Omizegba³

¹Department of Computer Engineering, University of Maiduguri, Borno State, Nigeria

²Department of Computer Engineering, University of Maiduguri, Borno State, Nigeria

³Electrical and Electronics Engineering Programme, Abubakar Tafawa Balewa University, P.M.B 0248, Bauchi, Bauchi State, Nigeria

ABSTRACT

The proportional-integral-derivative (PID) controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI) method of particle swarm optimization (PSO) algorithm for tuning the optimal proportional-integral derivative (PID) controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.

KEYWORDS

PID Controller, Particle swarm optimization algorithm, Ziegler- Nichols method, Simulation

For More Details:https://aircconline.com/ijaia/V2N4/1011ijaia03.pdf

Volume Link: http://www.airccse.org/journal/ijaia/current2011.html

- [1]. A. Varsek, T. Urbacic and B. Filipic, 1993, Genetic Algorithms in Controller Design and Tuning, IEEE Trans. Sys. Man and Cyber, Vol. 23/5, pp1330-1339.
- [2]. Astrom, K. J. and T., Hagglund, 1995, PID Controllers: Theory, Design and Tuning, ISA, Research Triangle, Par, NC.
- [3]. B.Nagaraj,S.Suba and B.Rampriya: Tuning Algorithms for PID Controller Using Soft Computing Techniques; International Journal of Computer Science and Network Security(IJCSNS), VOL.8 No.4, April 2008. pp278-281.
- [4]. Clerc, M. ,1999, The Swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proceedings of the Conference on Evolutionary Computation, pp. 1951-1957.
- [5]. Cohen G.H. and Coon G.A., "Theoretical consideration of retarded control", Trans. ASME, Vol. 75, pp. 827-834, 1953
- [6]. Eberhart, R.C. and Shi, Y.H., 2000, Comparing inertia weights and constriction factors in particle swarm optimization. Proc. The 2000 Congress on Evolutionary Computation. Vol.1, pp. 84-88.
- [7]. Engineering and Information Technology 2011
- [8]. Gaing, Z.L., 2004, A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transaction on Energy Conversion, Vol.19(2), pp.384-391.
- [9]. Hugo, J. Alan, 2002, Process Controller Performance Monitoring and Assessment, http/www.controlartsinc.com/support/articles/PerformanceAssessment.PDF. Accessed 31/6/10
- [10]. K Ogata, 1987, Modern Control Systems, University of Minnesota, Prentice Hall.
- [11]. K Ogata, 2005, Modern Engineering (fifth edition), University of Minnesota, Prentice Hall.
- [12]. K. Krishnakumar and D. E. Goldberg, 1992, Control System Optimization Using Genetic Algorithms, Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, pp. 735-740.
- [13]. Kennedy, J. and Eberhart, R.C., 1995, Particle swarm optimization. Proc. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, pp. IV: 1942-1948.
- [14]. Krohling RA, Rey JP., 2001, Design of optimal disturbance rejection PID controllers using genetic algorithm. IEEE Trans Evol Comput;5: pp. 78–82.
- [15]. Kwok,D.P.,T.P.Leung and F.Sheng, 1993, Genetic algorithm for optimal dynamic control of robot arms. Proceedings of the International Conference on Industrial Electronics,Control and Instrumentation.15-19 November,SanFrancisco,CA, pp. 380-385.
- [16]. Mahmud Iwan Solihin, Lee Fook Tack and Moey Leap Kean, Tuning of PID Controller Using Particle Swarm Optimization (PSO), Proceeding of the International Conference on Advanced Science,
- [17]. Mitsukura Y, Yamamoto T, Kaneda M., June 1999, A design of self-tuning PID controllers using a genetic algorithm. In: Proc Am Contr Conf, San Diego, CA, pp. 1361–5.
- [18]. Nagaraj B, Subba S and Rampriya B, 2005, Tuning Algorithm for PID Using Soft-Computing Techniques. International Journal of Computer Science and Network Security, Vol 8, No 4 April , pp. 278 289.
- [19]. Ou, C. and Lin, W., 2006, Comparison between PSO and GA for parameters optimization of PID controller. Proc. IEEE International Conference on Mechatronics and Automation. Luoyang, China.
- [20]. Pillay N. and Govender P., 2007, A Particle Swarm Optimization Approach for Model Independent Tuning of PID Control Loop, IEEE Africon 2007, IEEE Catalog: 04CH37590C, ISBN: 0-7803-8606-X.
- [21]. Q.Wang, P Spronck and R Tracht, 2003, An Overview of Genetic Algorithms Applied to Control Engineering Problems. Proceedings of the Second International Conference on Machine Learning and Cybernetics.
- [22]. Qu Sun, Renhou Li and Ping and Zhang, 2003, Stable and Optimal Adaptive Fuzzy Control of Complex Systems using Fuzzy Dynamic Model. Fuzzy Sets and Systems, No 133 pp. 1 17.
- [23]. Rasmussen H., 2002, Automatic Tuning of PID Regulator. http://www.volgas.dk/nores/auto.pdf downloaded 30/6/10.
- [24]. Schei, Tor Steiner, 1994, Automatic Tuning of PID Controllers Based on Transfer Function Estimation, Automatica, pp. pp. 1983 1989.
- [25]. Seng TL, Khalid MB, Yusof R., 1999, Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans Syst Man Cybern B,29, pp. 226–36.
- [26]. Shi, Y.H. and Eberhart, R.C., 1998, A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska.
- [27]. Shi, Y.H. and Eberhart, R.C., 2001, Fuzzy Adaptive Particle Swarm Optimization. Proc. Congress on Evolutionary Computation. Seoul, Korea.
- [28]. T. O.Mahony, C J Downing and K Fatla, 2000, Genetic Algorithm for PID Parameter Optimization:

- Minimizing Error Criteria, Process Control and Instrumentation, University of Stracthclyde, pp. 148-153
- [29]. Visioli A., 2001, Tuning of PID controllers with fuzzy logic. Proc Inst Elect Eng Contr Theory Appl, 148(1), pp. 1–8.
- [30]. Zhong Jinghua ,2006, PID Controller Tuning: A Short Tutorial, http://saba.kntu.ac.ir/eecd/pd/download/PIDtutorial.pdf downloaded 1/7/2010

FORGED CHARACTER DETECTION DATASETS: PASSPORTS, DRIVING LICENCES AND VISA STICKERS

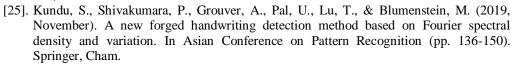
Teerath Kumar¹, Muhammad Turab2, Shahnawaz Talpur², Rob Brennan¹ and Malika Bendechache¹

¹CRT AI and ADAPT, School of Computing, Dublin City University, Ireland ²Department of Computer Systems Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan

ABSTRACT

Forged documents specifically passport, driving licence and VISA stickers are used for fraud purposes including robbery, theft and many more. So detecting forged characters from documents is a significantly important and challenging task in digital forensic imaging. Forged characters detection has two big challenges. First challenge is, data for forged characters detection is extremely difficult to get due to several reasons including limited access of data, unlabeled data or work is done on private data. Second challenge is, deep learning (DL) algorithms require labeled data, which poses a further challenge as getting labeled is tedious, time-consuming, expensive and requires domain expertise. To end these issues, in this paper we propose a novel algorithm, which generates the three datasets namely forged characters detection for passport (FCD-P), forged characters detection for driving licence (FCD-D) and forged characters detection for VISA stickers (FCD-V). To the best of our knowledge, we are the first to release these datasets. The proposed algorithm starts by reading plain document images, simulates forging simulation tasks on five different countries' passports, driving licences and VISA stickers. Then it keeps the bounding boxes as a track of the forged characters as a labeling process. Furthermore, considering the real world scenario, we performed the selected data augmentation accordingly. Regarding the stats of datasets, each dataset consists of 15000 images having size of 950 x 550 of each. For further research purpose we release our algorithm code 1 and, datasets i.e. FCD-P 2, FCD-D 3 and FCD-V 4.

KEYWORDS


Character detection dataset, Deep learning forgery, Forged character detection

For More Details: https://aircconline.com/ijaia/V13N2/13222ijaia02.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2022.html

- [1]. Fake identity brits warned that their lives are in danger, Online Available:https://www.independent.co.uk/news/world/middle-east/fake-identity-brits-warned-thattheir-lives-are-in-danger-1905971.html .
- [2]. Wu, L., Zhang, C., Liu, J., Han, J., Liu, J., Ding, E., & Bai, X. (2019, October). Editing text in the wild. In Proceedings of the 27th ACM international conference on multimedia (pp. 1500-1508).
- [3]. Yang, Q., Huang, J., & Lin, W. (2020). Swaptext: Image based texts transfer in scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14700- 14709).
- [4]. Roy, P., Bhattacharya, S., Ghosh, S., & Pal, U. (2020). STEFANN: scene text editor using font adaptive neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13228-13237).
- [5]. Korshunov, P., & Marcel, S. (2018). Deepfakes: a new threat to face recognition? assessment and detection. arXiv preprint arXiv:1812.08685.
- [6]. Zhao, L., Chen, C., & Huang, J. (2021). Deep Learning-based Forgery Attack on Document Images. arXiv preprint arXiv:2102.00653.
- [7]. Adadi, A. (2021). A survey on data-efficient algorithms in big data era. Journal of Big Data, 8(1), 1-54.
- [8]. Aiman, A., Shen, Y., Bendechache, M., Inayat, I., & Kumar, T. (2021). AUDD: Audio Urdu Digits Dataset for Automatic Audio Urdu Digit Recognition. Applied Sciences, 11(19), 8842.
- [9]. Kumar, T., Turab, M., Talpur, S Brennan, R., Bendechache, M. (2022). Detection Datasets: Forged Characters for Passport and Driving Licence. 6th International Conference on Artificial Intelligence, Soft Computing and Applications (AISCA 2022), (pp. 45-54)
- [10]. Bertrand, R., Gomez-Krämer, P., Terrades, O. R., Franco, P., & Ogier, J. M. (2013, August). A system based on intrinsic features for fraudulent document detection. In 2013 12th International conference on document analysis and recognition (pp. 106-110). IEEE.
- [11]. Shang, S., Kong, X., & You, X. (2015). Document forgery detection using distortion mutation of geometric parameters in characters. Journal of Electronic Imaging, 24(2), 023008.
- [12]. Ryan, M., & Hanafiah, N. (2015). An examination of character recognition on ID card using template matching approach. Procedia Computer Science, 59, 520-529.
- [13]. Poddar, J., Parikh, V., & Bharti, S. K. (2020). Offline signature recognition and forgery detection using deep learning. Procedia Computer Science, 170, 610-617.
- [14]. Bertrand, R., Terrades, O. R., Gomez-Krämer, P., Franco, P., & Ogier, J. M. (2015, August). A conditional random field model for font forgery detection. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR)(pp. 576-580). IEEE.
- [15]. Cruz, F., Sidere, N., Coustaty, M., d'Andecy, V. P., & Ogier, J. M. (2017, November). Local binary patterns for document forgery detection. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) (Vol. 1, pp. 1223-1228). IEEE.
- [16]. Sidere, N., Cruz, F., Coustaty, M., & Ogier, J. M. (2017, September). A dataset for forgery detection and spotting in document images. In 2017 Seventh International Conference on Emerging Security Technologies (EST) (pp. 26-31). IEEE.
- [17]. Artaud, C., Doucet, A., Ogier, J. M., & d'Andecy, V. P. (2017, November). Receipt Dataset for Fraud Detection. In First International Workshop on Computational Document Forensics.
- [18]. Artaud, C., Sidère, N., Doucet, A., Ogier, J. M., & Yooz, V. P. D. A. (2018, August). Find it! fraud detection contest report. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 13-18). IEEE.
- [19]. Nandanwar, L., Shivakumara, P., Pal, U., Lu, T., Lopresti, D., Seraogi, B., & Chaudhuri, B. B. (2021). A new method for detecting altered text in document images. International Journal of Pattern Recognition and Artificial Intelligence, 35(12), 2160010
- [20]. Nandanwar, L., Shivakumara, P., Mondal, P., Raghunandan, K. S., Pal, U., Lu, T., & Lopresti, D. (2021). Forged text detection in video, scene, and document images. IET Image Processing, 14(17), 4744-4755.
- [21]. Deshpande, P., & Kanikar, P. (2012). Pixel based digital image forgery detection techniques. International Journal of Engineering Research and Applications (IJERA), 2(3), 539-543.
- [22]. Van Beusekom, J., Shafait, F., & Breuel, T. M. (2013). Text-line examination for document forgery detection. International Journal on Document Analysis and Recognition (IJDAR), 16(2), 189-207
- [23]. Wilkinson, T. S., & Goodman, J. W. (1991, February). Slope histogram detection of forged handwritten signatures. In High-Speed Inspection Architectures, Barcoding, and Character Recognition (Vol. 1384, pp. 293-304). SPIE.
- [24]. Shivakumara, P., Basavaraja, V., Gowda, H. S., Guru, D. S., Pal, U., & Lu, T. (2018, August). A new

RGB based fusion for forged IMEI number detection in mobile images. In 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 386-391). IEEE

- [26]. Hashmi, S. A. A., Upadhyay, S., & Kumar, R. (2021). Comparative Study of Forged Urdu Signatures Done By Persons Not Familiar To Language Belongs To Region of Sikkim And Kashmir. Journal of Punjab Academy of Forensic Medicine & Toxicology, 21(1).
- [27]. Lee, J., Kong, S. G., Lee, Y. S., Moon, K. W., Jeon, O. Y., Han, J. H., ... & Seo, J. S. (2012). Forged seal detection based on the seal overlay metric. Forensic science international, 214(1-3), 200-206.
- [28]. Tralic, D., Zupancic, I., Grgic, S., & Grgic, M. (2013, September). CoMoFoD—New database for copy-move forgery detection. In Proceedings ELMAR-2013 (pp. 49-54). IEEE.
- [29]. Cha, S. H., & Tappert, C. C. (2002, August). Automatic detection of handwriting forgery. In Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition (pp. 264-267). IEEE.
- [30]. Nagel, R. N., & Rosenfeld, A. (1977). Computer detection of freehand forgeries. IEEE Transactions on Computers, 26(09), 895-905.
- [31]. Megahed, A., Fadl, S. M., Han, Q., & Li, Q. (2017, November). Handwriting forgery detection based on ink colour features. In 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS) (pp. 141-144). IEEE.
- [32]. Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning, 3(1), 1-130.

AUTHORS

Teerath kumar received his Bachelor's degree in Computer Science with distinction from National University of Computer and Emerging Science (NUCES), Islamabad, Pakistan, in 2018. Currently, he is pursuing PhD from Dublin City University, Ireland. His research interests include advanced data augmentation, deep learning for medical imaging, generative adversarial networks and semi-supervised learning.

Muhammad Turab is an undergraduate final year student at Computer Systems Engineering MUET, Jamshoro. He has done 60+ projects with java and python, all projects can be found on GitHub. His research interests include deep learning, computer vision and data augmentation for medical imaging.

Shahnawaz Talpur is the chairman of Computer Systems Engineering Department at Muet Jamshoro. He has done his masters from MUET and PhD from Beijing Institute of Technology, China. His research interests include high performance computing, computer architecture and big data.

R. Brennan is an Assistant Professor in the School of Computing, Dublin City University, founding Chair of the DCU MA in Data Protection and Privacy Law and a Funded investigator in the Science Foundation Ireland ADAPT Centre for Digital Content Technology which is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund, His main research interests are data protection, data value, data quality, data privacy, data/AI governance and semantics.

M. Bendechache is an Assistant Professor in the School of Computing at Dublin City University, Ireland. She obtained her Ph.D. degree from University College Dublin, Ireland in 2018. Malika's research interests span the areas of Big data Analytics, Machine Learning, Data Governance, Cloud Computing, Blockchain, Security, and Privacy. She is an academic member and a Funded

Investigator of ADAPT and Lero research centres.

USING SENTIMENT ANALYSIS FOR STOCK EXCHANGE PREDICTION

Milson L. Lima1, Thiago P. Nascimento1, Sofiane Labidi1, Nadson S. Timbó1, Marcos V. L. Batista1, Gilberto N. Neto1,2, Eraldo A. M. Costa1 and Sonia R. S. Sousa

Post-Graduation Program in Electrical Engineering, Federal University of Maranhão, MA, Brazil 2Department of Information and Communication, Federal Education Institute of Piauí – Campus Picos, PI, Brazil

ABSTRACT

The economic growth is a consensus in any country. To grow economically, it is necessary to channel the revenues for investment. One way of raising is the capital market and the stock exchanges. In this context, predicting the behavior of shares in the stock exchange is not a simple task, as itinvolves variables not always known and can undergo various influences, from the collective emotion to high-profile news. Such volatility can represent considerable financial losses for investors. In order to anticipate such changes in the market, it has been proposed various mechanisms trying to predict the behavior of an asset in the stock market, based on previously existing information. Such mechanisms include statistical data only, without considering the collective feeling. This paper is going to use natural language processing algorithms (LPN) to determine the collective mood on assets and later with the help of the SVM algorithm to extract patterns in an attempt to predict the active behaviour.

KEYWORDS

Sentiment Analysis, Machine Learning, Stock Exchange, Petrobras, Artificial Intelligence

For More Details: https://aircconline.com/ijaia/V7N1/7116ijaia06.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2016.html

- [1] LOPES, L. A. (2012). Um sistema de inferência fuzzy como suporte a tomada de decisão para a compra e venda de ativos na bolsa de valores. Course Completion work (Bachelor of Science in Computer) Centro de Ensino Unificado de Teresina, Teresina..
- [2] SOUZA, I. M. M. (2012). Um estudo comparativo para previsão da cotação de ações da BOVESPA utilizando redes neurais artificiais. Course Completion work (Bachelor of Science in Computer) Universidade Federal de Pernambuco, Recife.
- [3] ROCHA, H. R. e MACEDO, M. (2011). Previsão do preço de ações usando redes neurais. Congresso USP de Iniciação Científica em Contabilidade, 8 São Paulo, São Paulo.
- [4] LEMOS, Lúcia. O poder do discurso na cultura digital: o caso Twitter. Revista de Estudos e Pesquisas em Linguagem e Mídia. São Paulo, v.4. n.1. Janeiro-Abril de 2008.
- [5] S. Asur and A. Huberman. Predicting the Future with Social Media. CoRR, abs/1003.5699. 2010.
- [6] Eirinaki, M., Pisal, S., and Singh, J. Feature-based opinion mining and ranking. Journal of Computer and System Sciences 78, 4 (July 2012), 1175–1184.
- [7] Fang, Y., Si, L., Somasundaram, N., Yu, Z.: Mining contrastive opinions on political texts using cross-perspective topic model. In: Proceedings of the fifth ACM international conference on Web search and data mining WSDM'12. p. 63. ACM Press, New York, USA (2012).
- [8] St Louis, C., & Zorlu, G. (2012). Can Twitter predict disease outbreaks? BMJ, 344, 1-3.
- [9] Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval. doi:10.1561/1500000011
- [10] S. Asur and A. Huberman. Predicting the Future with Social Media. CoRR, abs/1003.5699. 2010.
- [11] BOLLEN, J., MAO, H., AND ZENG, X. Twitter mood predicts the stock market. Journal of Computational Science 2, 1 (2011), 1–8.
- [12] PANG, Bo;LEE, Lilian. (2008). Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2(1-2), pp. 1–135, June 2008.
- [13] Liu, B. (2010). Sentiment Analysis and Subjectivity. In Nitin Indurkhya & F. J. Damerau (Eds.), Handbook of Natural Language Processing, Second Edition. Boca Raton, FL: CRC Press, Taylor and Francis Group.
- [14] Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies 5(1), 1–167 (May 2012).
- [15] Stevens, Vance (2008). "Trial by Twitter: The Rise and Slide of the Year's Most Viral Microblogging Platform". TESLEJ: Teaching English as a Second or Foreign Language, Vol. 12, N. 1, 2008.
- [16] https://blog.twitter.com/2014/the-2014-yearontwitter, accessed: (2015-09-12).
- [17] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter Sentiment Classification using Distant Supervision. In Final Projects from CS224N for Spring 2008/2009 at The Stanford Natural Language Processing Group.224N for Spring 2008/2009 at The Stanford Natural Language Processing Group.
- [18] Saif Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. 2013. NRC-Canada: Building the state-ofthe-art in sentiment analysis of tweets. In Proceedings of the International Workshop on Semantic Evalua- tion, SemEval '13, Atlanta, Georgia, USA, June.
- [19] FAYYAD, U. M., Piatetsky Shapiro, G., Smyth, P. & Uthurusamy, R. "Advances in Knowledge Discovery and Data Mining" 1996, AAAIPress, The Mit Press.
- Read. J (2005). Using Emoticons to reduce Dependency in Machine Learning Techniques for Sentiment Classification. Proceedings of the ACL Student Research Workshop. 43-48.

A CASE STUDY OF INNOVATION OF AN INFORMATION COMMUNICATION SYSTEM AND UPGRADE OF THE KNOWLEDGE BASE IN INDUSTRY BY ESB, ARTIFICIAL INTELLIGENCE, AND BIG DATA SYSTEM INTEGRATION

Alessandro Massaro^{1,*}, Angelo Calicchio¹, Vincenzo Maritati¹, Angelo Galiano¹, Vitangelo Birardi¹, Leonardo Pellicani¹, Maria Gutierrez Millan², Barbara Dalla Tezza², Mauro Bianchi², Guido Vertua², Antonello Puggioni²

¹Dyrecta Lab, IT Research Laboratory, Via Vescovo Simplicio, 45, 70014 Conversano (BA), Italy.

²Performance in Lighting S.p.A., Viale del Lavoro 9/11 - 37030 Colognola ai Colli (VR), Italy.

ABSTRACT

In this paper, a case study is analyzed. This case study is about an upgrade of an industry communication system developed by following Frascati research guidelines. The knowledge Base (KB) of the industry is gained by means of different tools that are able to provide data and information having different formats and structures into an unique bus system connected to a Big Data. The initial part of the research is focused on the implementation of strategic tools, which can able to upgrade the KB. The second part of the proposed study is related to the implementation of innovative algorithms based on a KNIME (Konstanz Information Miner) Gradient Boosted Trees workflow processing data of the communication system which travel into an Enterprise Service Bus (ESB) infrastructure. The goal of the paper is to prove that all the new KB collected into a Cassandra big data system could be processed through the ESB by predictive algorithms solving possible conflicts between hardware and software. The conflicts are due to the integration of different database technologies and data structures. In order to check the outputs of the Gradient Boosted Trees algorithm an experimental dataset suitable for machine learning testing has been tested. The test has been performed on a prototype network system modeling a part of the whole communication system. The paper shows how to validate industrial research by following a complete design and development of a whole communication system network improving business intelligence (BI).

KEYWORDS

Frascati Guideline, ESB, Data Mining, KNIME, Gradient Boosted Tree Algorithm, Big Data.

For More Details: https://aircconline.com/ijaia/V12N2/12221ijaia01.pdf

Volume Link: http://www.airccse.org/journal/ijaia/current2021.html

- [1]. Frascati Manual 2015: The Measurement of Scientific, Technological and Innovation ActivitiesGuidelines for Collecting and Reporting Data on Research and Experimental Development. OECD (2015), ISBN 978-926423901-2 (PDF).
- [2]. Hohpe, G., & Woolf, B. (2004) "Enterprise Integration Patterns Designing, Building, and Deploying Messaging Solutions", Addison-Wesley.
- [3]. Polgar, J. (2009) "Open Source ESB in Action", IGI Publishing.
- [4]. Górski, T., & Pietrasik, K. (2016) "Performance analysis of Enterprise Service Buses", Journal of Theoretical and Applied Computer Science, Vol. 10, No. 2, pp 16-32.
- [5]. Yenlo (2016) "ESB Comparison How to choose a reliable and fast ESB that fits your business needs", white paper.
- [6]. Massaro, A., Maritati, V., Galiano, A., Birardi, V., Pellicani, L. (2018) "ESB Platform Integrating KNIME Data Mining Tool Oriented on Industry 4.0 based on Artificial Neural Network Predictive Maintenance", International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 9, No. 3, pp1-17.
- [7]. Bassil, Y. (2012) "A Simulation Model for the Waterfall Software Development Life Cycle", International Journal of Engineering & Technology (IJET), Vol. 2, No. 5, pp1-7.
- [8]. Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., Ravimohan, R. (2010) "Evolving A New Model (SDLC Model-2010) For Software Development Life Cycle (SDLC)," IJCSNS International Journal of Computer Science and Network Security, Vol.10 No.1, January 2010.
- [9]. Rather, M. A., Bhatnagar, V. (2015) "A Comparative Study of Software Development Life Cycle Models", Vol. 4, No. 10, pp23-29.
- [10]. Dilek, S., Çakır, H., Aydın, M. (2015) "Applications of Artificial Intelligence Techniques to Combating Cyber Crimes: a Review", International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 6, No. 1, pp21-39.
- [11]. Linoff, G. S., Berry, M. J. (2011) "Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management", 3rdEdition, John Wiley & Sons Inc, 2011.
- [12]. Maimon, O., Rokach, L. (2006) "Data Mining and Knowledge Discovery Handbook", 2nd edition, Springer US, 2010.
- [13]. Kotu, V., Deshpande, B. (2015) "Predictive Analytics and Data Mining", Elsevier book.
- [14]. Adhikari, N. C. D. (2018) "Prevention of Heart Problem Using Artificial Intelligence", International Journal of Artificial Intelligence and Applications (IJAIA), Vo., 9, No. 2, pp21-35.
- [15]. Khan, N., Yaqoob, I., Ibrahim, Hashem, A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M., Shiraz, M., Gani, A. (2014) "Big Data: Survey, Technologies, Opportunities, and Challenges", Hindawi Publishing Corporation The Scientific World Journal, Vol. 2014, No. 712826, pp1-18.
- [16]. Massaro, A., Maritati, V., Savino, N., Galiano, A., Convertini, D., De Fonte, E., Di Muro, M. (2018) "A Study of a Health Resources Management Platform Integrating Neural Networks and DSS Telemedicine for Homecare Assistance," Information, Vol. 9, No. 176, pp1-20.
- [17]. Prasad, B. R., Agarwal, S. (2016) "Comparative Study of Big Data Computing and Storage Tools: A Review", International Journal of Database Theory and Application, Vol. 9, No. 1, pp45-66.
- [18]. Zheng, Z., Wang, P., Liu, J., Sun, S. (2015) "Real-Time Big Data Processing Framework: Challenges and Solutions," Applied Mathematics & Information Sciences An International Journal, Vol. 9, No. 6, pp3169-3190.
- [19]. Hashem, I. A. T., Yaqoo, I., Anuar, N. B., Mokhtar, S., Gani, A., Khan, A. U. (2015) "The Rise of 'Big Data' on Cloud Computing: Review and Open Research Issues," Information Systems, Vol. 47, pp98– 115.
- [20]. Pandove, K, Jindal, A., Kumar, R. (2010) "Email Security", International Journal of Computer Applications, Vol. 5, No. 1, pp23-26.
- [21]. Ruotsalainen, P. (2013) "Endpoint Protection Security System for an Enterprise", Master's Thesis, Jamk University of Applied Sciences.
- [22]. Cantoni L., Di Blas, N., Bolchini, D. (2010) "Comunicazione, Qualità, Usabilità, una Nuova Prospettiva per la Valutazione di Siti Web", Maggiolini Editore, ISBN: 9788838788888.
- [23]. Massaro, A., Maritati, V., Galiano, A. (2018) "Data Mining Model Performance of Sales Predictive Algorithms Based on RapiMiner Workflow", International Journal of Computer Science & Information Technology (IJCSIT), Vol. 10, No. 3, pp39-56.
- [24]. Massaro, A., Barbuzzi, D., Vitti, V., Galiano, A., Aruci, M., Pirlo, G. (2016) "Predictive Sales Analysis According to the Effect of Weather", Proceeding of the 2nd International Conference on Recent Trends and Applications in Computer Science and Information Technology, Tirana, Albania, November 18 -

- 19, pp53-55.
- [25]. Johansson, M., Roupé, M., Tallgren M. V. (2014) "From BIM to VR", Proceedings of the 32nd eCAADe Conference, Vol. 2 (eCAADe 2014), pp1-9.
- [26]. "WSO2 Data Service Server" 2018. [Online]. Available: https://wso2.com/products/data-servicesserver/
- [27]. "Getting Started with Apache Cassandra on Windows the Easy Way" [Online]. Available: https://www.datastax.com/2012/01/getting-started-with-apache-cassandra-on-windows-the-easy-way
- [28]. "Machine Learning Repository" [Online]. Available: https://archive.ics.uci.edu/ml/datasets/online+retail#
- [29]. Chen, D., Sain, S. L., Guo, K. (2012) "Data Mining for the Online Retail Industry: A Case Study of RFM Model-Based Customer Segmentation Using Data Mining", Journal of Database Marketing and Customer Strategy Management, Vol. 19, No. 3, pp197-208.
- [30]. Friedman, J. H. (2001) "1999 REITZ LECTURE Greedy Function Approximation: A Gradient Boosting Machine", The Annals of Statistics, Vol. 29, No. 5, pp1189-1232.
- [31]. Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A. (1984) "Classification and Regression Trees", Taylor & Francis.

Corresponding Author

Alessandro Massaro: Research & Development Chief of Dyrecta Lab s.r.l.

TRANSFER LEARNING BASED IMAGE VISUALIZATION USING CNN

Santosh Giri1 and Basanta Joshi2

1Department of Computer & Electronics Engineering, Kathford Int'l College of Engineering and Management, IOE, TU, Nepal

2Department of Electronics & Computer Engineering, Pulchowk Campus, IOE, TU, Nepal

ABSTRACT

Image classification is a popular machine learning based applications of deep learning. Deep learning techniques are very popular because they can be effectively used in performing operations on image data in large-scale. In this paper CNN model was designed to better classify images. We make use of feature extraction part of inception v3 model for feature vector calculation and retrained the classification layer with these feature vector. By using the transfer learning mechanism the classification layer of the CNN model was trained with 20 classes of Caltech101 image dataset and 17 classes of Oxford 17 flower image dataset. After training, network was evaluated with testing dataset images from Oxford 17 flower dataset and Caltech101 image dataset. The mean testing precision of the neural network architecture with Caltech101 dataset was 98 % and with Oxford 17 Flower image dataset was 92.27 %.

KEYWORDS

Image Classification, CNN, Deep Learning, Transfer Learning.

For More Details: https://aircconline.com/ijaia/V10N4/10419ijaia04.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2019.html

- [1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, Backpropagation applied to handwritten zip code recognition," Neural computation, vol. 1, no. 4, pp. 541-551, 1989.
- [2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
- [3] D. R. Reddy, Speech recognition by machine: A review," Proceedings of the IEEE, vol. 64, no. 4, pp. 501-531, 1976.
- [4] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J. Wu, and A. Y. Ng, Text detection and character recognition in scene images with unsupervised feature learning,"in Document Analysis and Recognition (ICDAR), 2011 International Conference on. IEEE, 2011, pp. 440-445.
- [5] T. Varga, D. Kilchhofer, and H. Bunke, Template-based synthetic handwriting generation for the training of recognition systems," in Proceedings of the 12th Conference of the International Graphonomics Society, 2005, pp. 206-211.
- [6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818-2826.
- [7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.
- [8] Q. Liu, A. Puthenputhussery, and C. Liu, Novel general knn classifier and general nearest mean classifier for visual classification," in Image Processing (ICIP), 2015 IEEE International Conference on. IEEE, 2015, pp. 1810-1814.
- [9] J. M. Keller, M. R. Gray, and J. A. Givens, A fuzzy k-nearest neighbor algorithm," IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580-585, 1985.
- [10] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information theory, vol. 50, no. 10, pp. 2231-2242, 2004.
- [11] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.
- [12] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of the devil in the details: Delving deep into convolutional nets," arXiv preprint arXiv:1405.3531, 2014.
- [13] Jolliffe, Principal component analysis," in International encyclopedia of statistical science. Springer, 2011, pp. 1094-1096.
- [14] Sun, X. Cai, F. Sun, and J. Zhang, Scene image classification method based on alex-net model," in Informative and Cybernetics for Computational Social Systems (ICCSS), 2016 3rd International Conference on. IEEE, 2016, pp. 363-367.
- [15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
- [16] B. Cortes and V. Vapnik, Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.
- [17] N. M. Nasrabadi, Pattern recognition and machine learning," Journal of electronic imaging, vol. 16, no. 4, p. 049901, 2007.
- [18] He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition," in European conference on computer vision. Springer, 2014, pp. 346-361.
- [19] T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, The nbnn kernel," in Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011, pp. 1824-1831.
- [20] P. Murphy et al., Naive bayes classifiers," University of British Columbia, vol. 18, 2006.
- [21] Z. S. Harris, Distributional structure," Word, vol. 10, no. 2-3, pp. 146-162, 1954.
- [22] C. Theriault, N. Thome, and M. Cord, Extended coding and pooling in the hmax model," IEEE Transactions on Image Processing, vol. 22, no. 2, pp. 764-777, 2013.
- [23] Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex," Nature neuroscience, vol. 2, no. 11, p. 1019, 1999.
- [24] M.-E. Nilsback and A. Zisserman, A visual vocabulary for flower classification," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE, 2006, pp. 1447-1454
- [25] D. G. Lowe, Object recognition from local scale-invariant features," in Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2. Ieee, 1999, pp. 1150-1157.
- [26] A. R. Smith, Color gamut transform pairs," ACM Siggraph Computer Graphics, vol. 12, no. 3, pp. 12-19, 1978.

- [27] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine learning: A review of classification techniques," Emerging artificial intelligence applications in computer engineering, vol.160, pp. 3-24, 2007.
- [28] L. Fei-Fei, R. Fergus, and P. Perona, Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," Computer vision and Image understanding, vol. 106, no. 1, pp. 59-70, 2007.
- [29] M.-E. Nilsback and A. Zisserman, A visual vocabulary for flower classification," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE, 2006, pp. 1447-1454.
- [30] S. J. Pan, Q. Yang et al., A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010.
- [31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database," in CVPR09, 2009.
- [32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., Tensor flow: a system for large-scale machine learning." in OSDI, vol. 16, 2016, pp. 265-283.
- [33] Y. Chai, V. Lempitsky, and A. Zisserman, Bicos: A bi-level co-segmentation method for image classification," 2011.

AGENT-BASED MODELING IN SUPPLY CHAIN MANAGEMENT: A GENETIC ALGORITHM AND FUZZY LOGIC APPROACH

1Meriem DJENNAS, 2Mohamed BENBOUZIANE and3Mustapha DJENNAS

1Department of Economics, Amiens University, Amiens, France 2Department of Economics, TlemcenUniversity, Tlemcen, Algeria 3Department of Economics, TlemcenUniversity, Tlemcen, Algeria

ABSTRACT

In today's global market, reaching a competitive advantage by integrating firms in a supply chain management strategy becomes a key success for any firm seeking to survive in a complex environment. However, as interactions among agents in the supply chain management (SCM) remain unpredictable, simulation appears as a powerful tool aiming to predict market behavior and agents' performance levels. This paper discusses the issues of supply chain management and the requirements for supply chain simulation modeling. It reviews the relationships amongArtificial Intelligence (AI) and SCM and concludes that under some conditions, SCM models exhibit some inadequacies that may be enriched by the use of AI tools. This approach aims to test the supply chain activities of nine companies in the crude oil market. The objective is to tackle the issues under which agents can coexist in a competitive environment. Furthermore, we will specify the supply chain management trading interaction amongagents by using an optimization approach based on a Genetic Algorithm (AG), Clustering and Fuzzy Logic (FL). Results support the view that the structured model provides a good tool for modeling the supply chain activities using AI methodology.

KEYWORDS

Supply Chain Management, Genetic Algorithm, Fuzzy Logic, Clustering, Optimization.

For More Details: https://aircconline.com/ijaia/V3N5/3512ijaia02.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2012.html

- [1] Anderson P., Aronson H., Storhagen N.G. (1989) "Measuring logistics performance". Engineering Costs and Production Economics, vol. 17, p. 253–262.
- [2] Androdottir S. (1998), Handbook of simulation. Wiley, New York, p. 307–334.
- [3] Bezdek J.C., (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.
- [4] Byrn M.D., Bakir M.A., (1999), "Production planning using a hybrid simulation-analytical approach". Journal of Production Economics, vol 59, p. 305–311.
- [5] Chiu S. (1994), "Fuzzy Model Identification Based on Cluster Estimation", Journal of Intelligent and Fuzzy Systems, vol. 2, p. 3.
- [6] Davis L. (1991), Handbook of Genetic Algorithm, Van Nostrand, Reinhold, New York.
- [7] Energy Information Administration www.eia.doe.gov
- [8] Evans G.N, Naim M.M.&Towill D.R., (1998), "Application of a simulation methodology to the redesign of a logistical control system", Journal of Production Economics, p. 56–57/157–168.
- [9] Felix T.S., Chan H.K. (2004), Simulation modeling for comparative evaluation of supply chain management strategies. Springer-Verlag London Limited.
- [10] Fu M., (2001), "Simulation optimization", Proceedings of the 2001 Winter Simulation Conference, p.53–61.
- [11] Goldberg D.E., (1989), Genetic Algorithm in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA.
- [12] Holland J.H., (1975), "Adaptation in Natural and Artificial Systems", The University of MichiganPress.
- [13] Ingalls R.G., (1998), "The value of simulation in modeling supply chain". Proceedings of the 1998 Winter Simulation Conference, p. 1371–1375.
- [14] Joines J.A., Kupta D., Gokce M.A., King R.E., Kay M.G., (2002), "Supply chain multi-objective simulation optimization". Proceedings of the 2002 Winter Simulation Conference, p. 1306–1314.
- [15] Khoo L.P., Lee S.G., Yin X.F., (2000), "A prototype genetic algorithm-enhanced multi-objective dynamic scheduler for manufacturing systems", International Journal of Advanced Manufacturing Technology, vol. 16, p. 131-138.
- [16] Khoo L.P., Yin X.F., (2003), "An extended graph-based virtual clustering-enhanced approach to supply chain optimisation", International Journal of Advanced Manufacturing Technology, vol. 22, p. 36-47.
- [17] Kim B., Kim S. (2001), "Extended model of a hybrid production planning approach". Journal of Production Economics,vol. 73, p. 165–173.
- [18] Lee Y.H, Cho M.K., Kim S.J., Kim Y.B., (2002), "Supply chain simulation with discrete-continuous combined modeling", Computer Industrial Engineering, vol 43, p. 375–392.
- [19] Lee Y.H., Kim S.H., (2002), "Production-distribution planning in supply chain considering capacity constraints". Computer Industrial Engineering, vol. 43, p. 169–190.
- [20] Mamdani E.H., Assilian S., (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", International Journal of Man-Machine Studies, vol. 7, p. 1-13.
- [21] Mathieu P., Beaufils B., Brandouy O., (2006), Artificial Economics, agent-based methods in finance, game theory and their applications, Springer.
- [22] Stainer A., (1997) "Logistics a productivity and performance perspective", Supply Chain Management: An International Journal, Vol. 2 Iss: 2, pp.53-62.
- [23] Serber G.A.F., (1984), Multivariate Observations, Wiley.
- [24] Stevens, G.C., (1989), "Integrating the supply chain", International Journal of Physical Distribution and Materials Management, Vol. 19 No. 8, p. 3-8.
- [25] Sugeno M., (1985), Industrial applications of fuzzy control, Elsevier Science Pub. Co.
- [26] Waters D., (2007), Global logistics new directions in Supply Chain Management, MPG Books Ltd, Bodmin, Cornwall.
- [27] Zadeh L.A.,(1965), "Fuzzy sets", Information and Control, vol. 8, p. 338-353.

HOME APPLIANCE IDENTIFICATION FOR NILM SYSTEMS BASED ON DEEP NEURAL NETWORKS

Deyvison de Paiva Penha1 and Adriana Rosa Garcez Castro2

- 1 Institute of Technology, Federal University of Para, Belém, Brazil
- 2 Institute of Technology, Federal University of Para, Belém, Brazil

ABSTRACT

This paper presents the proposal for the identification of residential equipment in non-intrusive load monitoring systems. The system is based on a Convolutional Neural Network to classify residential equipment. As inputs to the system, transient power signal data obtained at the time an equipment is connected in a residence is used. The methodology was developed using data from a public database (REED) that presents data collected at a low frequency (1 Hz). The results obtained in the test database indicate that the proposed system is able to carry out the identification task, and presented satisfactory results when compared with the results already presented in the literature for the problem in question.

KEYWORDS

Convolutional Neural Networks, identification of residential equipment, non-intrusive load monitoring, NILM.

For More Details: https://aircconline.com/ijaia/V9N2/9218ijaia06.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2018.html

- [1] HART, George William. Nonintrusive appliance load monitoring. Proceedings of the IEEE, v. 80, n. 12, p. 1870-1891, 1992.
- [2] FIGUEIREDO, Marisa. Contributions to Electrical Energy Disaggregation in a Smart Home. 2014. Tese de Doutorado. APA. Disponível em: www.http://hdl.handle.net/10316/24256>. Acessado em: novembro de 2017.
- [3] WANG, Zhiguang; OATES, Tim. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
- [4] ZHENG, Yi et al. Time series classification using multi-channels deep convolutional neural networks. In: International Conference on Web-Age Information Management. Springer, Cham, 2014. p. 298-310.
- [5] LECUN, Yann et al. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, v. 3361, n. 10, p. 1995, 1995.
- [6] LEE, Honglak et al. Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Advances in neural information processing systems. 2009. p. 1096 1104.
- [7] International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.2, March 2018 LÄNGKVIST, Martin; KARLSSON, Lars; LOUTFI, Amy. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, v. 42, p. 11-24, 2014.
- [8] ZHENG, Yi et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Frontiers of Computer Science, v. 10, n. 1, p. 96-112, 2016.
- [9] KELLY, Jack; KNOTTENBELT, William. Neural nilm: Deep neural networks applied to energy disaggregation. In: Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. ACM, 2015. p. 55-64.
- [10] DO NASCIMENTO, Pedro Paulo Marques. Applications of Deep Learning Techniques on NILM. 2016. Tese de Doutorado. Universidade Federal do Rio de Janeiro.
- [11] Wan He and Ying Chai. An Empirical Study on Energy Disaggregation via Deep Learning, in Advances in Intelligent Systems Research, volume 133, 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016), pp338-341, 2016
- [12] DE BAETS, Leen et al. Appliance classification using VI trajectories and convolutional neural networks. Energy and Buildings, v. 158, p. 32-36, 2018.
- [13] KOLTER, J. Zico; JOHNSON, Matthew J. REDD: A public data set for energy disaggregation research. In: Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA. 2011. p. 59-62.
- [14] KATO, Takekazu et al. Appliance Recognition from Electric Current Signals for Information Energy Integrated Network in Home Environments. ICOST, v. 9, p. 150-157, 2009.
- [15] FIGUEIREDO, Marisa B.; DE ALMEIDA, Ana; RIBEIRO, Bernardete. An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems. In: International Conference on Adaptive and Natural Computing Algorithms. Springer, Berlin, Heidelberg, 2011. p. 31-40.
- [16] BATRA, Nipun et al. A comparison of non-intrusive load monitoring methods for commercial and residential buildings. arXiv preprint arXiv:1408.6595, 2014.
- [17] CARVALHO, Jorge Miguel Vidal. Metodologias de monitorização de consumos. 2013.
- [18] NAJMEDDINE, Hala et al. State of art on load monitoring methods. In: Power and Energy Conference, 2008. PECon 2008. IEEE 2nd International. IEEE, 2008. p. 1256-1258.
- [19] PARSON, Oliver. Unsupervised training methods for non-intrusive appliance load monitoring from smart meter data. 2014. Tese de Doutorado. University of Southampton.
- [20] WONG, Yung Fei et al. Recent approaches to non-intrusive load monitoring techniques in residential settings. In: Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE Symposium on. IEEE, 2013. p. 73-79.
- [21] PROVOST, Foster; KOHAVI, Ron. Guest editors' introduction: On applied research in machine learning. Machine learning, v. 30, n. 2, p. 127-132, 1998.
- [22] ABDEL-HAMID, Ossama et al. Convolutional neural networks for speech recognition. IEEE/ACM

- Transactions on audio, speech, and language processing, v. 22, n. 10, p. 1533-1545, 2014.
- [23] Atabay, H.A.: Binary shape classification using convolutional neural networks. IIOAB J. 7(5), 332–336 (2016)
- [24] VARGAS, A. C. G.; PAES, A.; VASCONCELOS, C. N. Um estudo sobre redes neurais convolucionais e sua aplicação em detecção de pedestres. In: Proceedings of the XXIX Conference on Graphics, Patterns and Images. 2016. p. 1-4.
- [25] WONG, Yung Fei; DRUMMOND, T.; ŞEKERCIOĞLU, Y. A. Real-time load disaggregation algorithm using particle-based distribution truncation with state occupancy model. Electronics Letters, v. 50, n. 9, p. 697-699, 2014.
- [26] ZHAO, Bochao; STANKOVIC, Lina; STANKOVIC, Vladimir. On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access, v. 4, p. 1784-1799, 2016.
- [27] KONG, Weicong et al. Improving Nonintrusive Load Monitoring Efficiency via a Hybrid Programing Method. IEEE Transactions on Industrial Informatics, v. 12, n. 6, p. 2148-2157, 2016.
- [28] HIJAZI, Samer; KUMAR, Rishi; ROWEN, Chris. Using convolutional neural networks for image recognition. Tech. Rep., 2015. [Online]. Available: http://ip. cadence. com/uploads/901/cnn-wp-pdf.
- [29] DE PAIVA PENHA, Deyvison; CASTRO, Adriana Rosa Garcez. Convolutional neural network applied to the identification of residential equipment in non-intrusive load monitoring systems.
- [30] In: 3rd International Conference on Artificial Intelligence and Applications, pp. 11–21, 2017. © CS & IT-CSCP 2017

AUTHORS

B. Sc. **Devvison de Paiva** Penha is a Master Student in the Electrical Engineering Graduate Program in Federal University of Pará. He received his bachelor degree in 2009 at the Federal University of Pará. Prof. Dr. Adriana Rosa Garcez Castro has a Master's degree in Electrical Engineering from the Federal University of Pará in 1995 and a PhD in Electrical Engineering from the Faculty of Engineering of the University of Porto in 2004. She is currently a Professor at the Federal University of Pará. His areas of interest are: Control of Electronic Processes and Computational Intelligence applied to Energy Systems.

A COMPARATIVE STUDY OF LSTM AND PHASED LSTM FOR GAIT PREDICTION

Qili Chen1,2,3 ,Bofan Liang2 and Jiuhe Wang2

1Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China

2Department of Automation, Beijing Information Science and Technology University, Beijing, 100192, China

3Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China

ABSTRACT

With an aging population that continues to grow, the protection and assistance of the older persons has become a very important issue. Fallsare the main safety problems of the elderly people, so it is very important to predict the falls. In this paper, a gait prediction method is proposed based on two kinds of LSTM. Firstly, the lumbar posture of the human body is measured by the acceleration gyroscope as the gait feature, and then the gait is predicted by the LSTM network. The experimental results show that the RMSE between the gait trend predicted by the method and the actual gait trend can be reached a level of 0.06 ± 0.01 . And the Phased LSTM has a shorter training time. The proposed method can predict the gait trend well.

KEYWORDS

Elderly people fall, Acceleration gyro, Lumbar posture, Gait prediction, LSTM

For More Details: https://aircconline.com/ijaia/V10N4/10419ijaia05.pdf

Volume Link: https://www.airccse.org/journal/ijaia/current2019.html

- [1] Scheffer A C, Schuurmans M J, Van Dijk N, et al. Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons[J]. Age & Ageing, 2008, 37(1): 19-24.
- [2] Zhou Chuang; Fu Jia-yu; Lei Zhong-gui; Wang Zhi-xiong.Current status and prospects in the eldly fall detection research [J]. COMPUTER ENGINEERING & SOFTWARE,2018,v.39;No.462,119 123.
- [3] Wu G. Distinguishing fall activities from normal activities by velocity characteristics[J]. Journal of Biomechanics, 2000, 33(11): 1497-500.
- [4] Bourke A K, O'Donovan K J, Olaighin G. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls[J]. Medical Engineering & Physics, 2008, 30(7): 937.
- [5] Nyan M N, Tay F E, Mah M Z. Application of motion analysis system in preimpact fall detection[J]. Journal of Biomechanics, 2008, 41(10): 2297-2304.
- [6] Lina Tong. Human fall recognition method based on mechanical information acquisition system[D]. University of Science and Technology of China, 2011.
- [7] Shi G, Zhang J, Dong C, et al. Fall detection system based on inertial mems sensors: Analysis design and realization[C]// IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. IEEE 2015: 1834-1839.
- [8] CHEN Chaoqiang, JIANG Lei, WANG Heng. Gait prediction method of lower extremity exoskeleton based on SAE and LSTM neural network[J]. Computer Engineering and Applications:1-11[2019-02 24].
- [9] ZENG M,NGUYEN L T,YU B,et al. Convolutional neural networks for human activity recognition using mobile sensors [C]//2014 6th International Conference on MobileComputing, Applications and Services (MobiCASE).USA: IEEE,2014:197-205
- [10] XU Fan, CHENG Hua, FANG Yi-quan. A gait pattern classification method based on CLSTM [J]. Journal of East China University of Science and Technology (Natural Science Edition)2017,43(04):553-558.
- [11] Yu Liu; Shuting Dong; Mingming Lu; Jianxin Wang. LSTM Based Reserve Prediction for Bank Outlets [J]. Tsinghua Science and Technology, 2019, v. 24, 79-87.
- [12] Daniel Neil; Michael Pfeiffer; Shih-ChiiLiu. Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences [C]//arXiv:1610.09513v1 [cs.LG] 29 Oct 2016
- [13] Kumar, A., Sang wan, S. R., Arora, A., Nayyar, A., & Abdel-Basset, M. (2019). Sarcasm Detection Using Soft Attention-Based Bidirectional Long Short-Term Memory Model with Convolution Network. IEEE Access.

AUTHORS

Qili Chen was born in YuXian, ShanXi Province, China in 1985. She received the B.S degrees in automation from Chongqing University of Posts and Telecommunications in 2007, M.S and Ph.D. degrees in pattern recognition and intelligent system from Beijing University of Technology in 2010 and 2014. From Sep. 2012 to Aug.2013, she visited University of Wisconsin, Milwaukee (USA) in Department of Mathematical Sciences. Since 2014, She has been a Lecture with Automation College, Beijing Information Science and

Technology University. Her research interests include deep neural network, Modeling and optimal control.

Bofan liang was born in WuZhou, Guangxi Zhuang Autonomous Region, china in 1997.He is an undergraduate at Beijing Information Science and Technology University.

