keyboard_arrow_up
Trends in Financial risk Management
System in 2020

PREDICTING CLASS-IMBALANCED BUSINESS RISK USING RESAMPLING, REGULARIZATION, AND MODEL EMSEMBLING ALGORITHMS

    Yan Wang, Xuelei Sherry Ni, Kennesaw State University, USA

    ABSTRACT

    We aim at developing and improving the imbalanced business risk modeling via jointly using proper evaluation criteria, resampling, cross-validation, classifier regularization, and ensembling techniques. Area Under the Receiver Operating Characteristic Curve (AUC of ROC) is used for model comparison based on 10-fold cross validation. Two undersampling strategies including random undersampling (RUS) and cluster centroid undersampling (CCUS), as well as two oversampling methods including random oversampling (ROS) and Synthetic Minority Oversampling Technique (SMOTE), are applied. Three highly interpretable classifiers, including logistic regression without regularization (LR), L1-regularized LR (L1LR), and decision tree (DT) are implemented. Two ensembling techniques, including Bagging and Boosting, are applied on the DT classifier for further model improvement. The results show that, Boosting on DT by using the oversampled data containing 50% positives via SMOTE is the optimal model and it can achieve AUC, recall, and F1 score valued 0.8633, 0.9260, and 0.8907, respectively.

    KEYWORDS

    Imbalance, resampling, regularization, ensemble, risk modeling .


    For More Details :
    http://aircconline.com/ijmit/V11N1/11119ijmit01.pdf







menu
Reach Us

emailsecretary@cseij.org


emailcseijsecretary@yahoo.com

close