
Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

DOI:10.5121/cseij.2023.13601                                                                                                                        1 

 
COMPARATIVE ANALYSIS OF VERBAL LANGUAGES 

FOR COMPUTING TO DETERMINE WHICH 

LANGUAGE POSSESSES THE HIGHEST EFFICACY 

AND COMPUTATIONAL LOGIC FOR  
COMPILER OPTIMIZATION 

 

Bodle, W. L., McKenney, M., Segura, D., & Trafton, C. 
 

Department of Computer Science, California Baptist University, Riverside, CA 92504 
 

ABSTRACT 
 
This paper presents a comparative analysis of natural languages to discern their impact on the speed and 

optimization of compilation times within Java and C++ compilers. There lies a dominance of English in 
programming languages and limited research in this area. Our study explores potential barriers for non- 

English speakers and aims to identify correlations between written language and compilation efficiency. As 

we plan to unravel the impact of different natural languages on the speed and optimization of compilation 

time in C++ and Java we will be opening the door to a new idea of research. These insights contribute to 

the advancement of diversity and accessibility in computer software engineering as well as improved 

compilation times. 
 

KEYWORDS 

 
Compiler Optimization, Natural Languages, Compilation Time, Linguistic Factors on Compilation, 

Dominance of English in Programming 

 

1. INTRODUCTION 
 

In the world of contemporary software development, we are constantly seeking optimization. This 
extends to many different areas of software engineering, but for this paper we will be focusing on 

the functionality of compilers. As we continue the relentless pursuit for quicker speeds, reduced 

timelines, and raised system performance we will be introducing different natural languages on the 

effect of compilation time. 
 

The first compiler in the modern sense was developed in 1952 at the University of Manchester. 

Since then, compilers are constantly being optimized to increase speedup, reduce development 
time, and improve overall system performance. Doing so enhances developer productivity and 

allows for quicker feedback for developers.[1] While compilers have been optimized through 

machine learning and modern programming techniques, most programming languages, libraries, 

and documentations are in English. 
 

This poses a difficulty for non-English speakers when reading instructional materials or learning 

to code.[2] While non English-speaking programmers have trouble programming at a high level 
we will similarly be studying the effect of different natural languages on the speed and 

optimization of compilers. To study the effect of different languages on compilation time we will 

be conducting tests on different written languages on a Java and C++ compiler. By comparing the 

https://airccse.org/journal/cseij/vol13.html
https://doi.org/10.5121/cseij.2023.13601


Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

2 

compilation time of the same program in different languages we should be able to determine 
which written language is the easiest for a compiler to handle. 

 

Our approach involves an examination of the compilation times of identical programs on both a 

Java compiler and a C++ compiler. We aim to discern which written language proves to be the 
most accommodating for compilers. By comparing the compilation times of our languages with 

identical programs, we hope to discover a pattern that indicates which written language can be 

handled more efficiently by compilers. The findings from our study could offer valuable insights 
for developers, language designers, and educators. Having an optimized compiler leads to 

improved productivity, efficient iteration, enhanced user experience, and resource utilization. As 

we uncover which written languages are handled more efficiently by compilers, we aim to pave 
the way for advancements that empower non-English speaking programmers and foster a more 

inclusive and efficient programming ecosystem. 

 

2. BACKGROUND 
 
An article, “Program energy efficiency: The impact of language, compiler, and implementation 

choices,” by Sarah Abdulsalam, et al. explores the task of reducing energy usage in computing 

systems. Their goal is also to optimize compilers to help programmers write more efficient 
code.[3] By optimizing compilers we can improve system performance which is a goal we both 

align on. We both recognize the significance of improving efficiency in software development 

although we have a different focus. Our study focuses on the effect of different natural languages 

on compilation time while they focus on writing more energy-efficient code. Their method for 
determining a more energy efficient program was based on three factors, appropriate language, 

optimization flag, and data structure. Our research focuses only on appropriate language, both 

programming and written languages. 
 

Another paper written by Aidan Hall aligns with our research, which explores the impact of 

natural languages on compilation times in Java and C++ compilers. He critiques the prevailing 
ASCII text-based programming languages, emphasizing the challenges they pose for non-native 

English speakers and suggesting improvements for greater accessibility. Our study, too, 

recognizes the dominance of English in programming languages and seeks to identify patterns in 

compilation efficiency across different languages. The proposed enhancements, such as Unicode 
operators and identifiers based on non-English natural languages, resonate with our aim of 

understanding the linguistic factors influencing compiler optimization. Both works share a 

common goal of fostering inclusivity in programming by addressing language-related barriers and 
advancing the evolution of programming languages for improved efficiency and 

expressiveness.[4] 

 

If we can reveal the best language for compiler optimization it could lead to an easy method to 
speedup programs. This is assuming that the world would be willing to break away from the 

programming norm where documentation and languages are predominantly written in English. 

This could also give non-English speakers an argument toward having more documentation 
written in their language to aid growth of technological fields in places that would otherwise 

require people to learn English in order to program efficiently and effectively. 

 

3. METHOD 
 
Our method to address this is rooted in recognizing that while there is constant work done in the 

optimization of compilers to enhance performance, the impact of different natural languages on 

compilation time is unexplored. Most languages used for programming are written in English 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

3 

with all documentation also written in English, leaving very little room for growth in 
programming with different languages. This can create a barrier for non-English speakers but 

may also be affecting our programming and compilation speed due to the way programming has 

been set in English. 

 
The hypothesis we have reached is that the choice of a written language may influence the speed 

and optimization of compilers. We plan to investigate this and determine if there really is a 

correlation between natural language and compilation speed. We plan to test both Java and C++ 
compilers, with the goal of comparing compilation times for the same program but written in 

different languages. The compilers we will be using are the javac 21 for Java and the Apple 

Clang version 15.0.0 for C++. We hope to reveal patterns in which different written language is 
handled more efficiently. 

 

To prove the validity of our approach, we must statistically analyze the compilation time data. For 

this we will let μᵢ represent the compilation time for each program in language i where i ranges 
over the five languages we will be studying. English, Chinese, French, Italian, and Russian. We 

can create a test to determine whether there are significant differences in compilation times 

between languages. We will be using a one-way analysis of variance (ANOVA), where we will 

use this for the null hypothesis: 
H0: μ1=μ2= μ3=μ4 =μ5 

 

ANOVA stands for Analysis of Variance and is the statistical test used to analyze the difference 

and significance between the means of more than two groups. We will be using five different 
groups across two separate ANOVA tests for program one and two. It works by comparing the 

means of each group including spreading out the variance into diverse sources. Using ANOVA we 

will calculate an F-statistic, using that we can indicate if there are significant differences between 
the language group means. 

 

The alternative would be that at least one i is different. We will be collecting compilation time 
data against different programs and languages; we will then perform a statistical test to assess 

whether the observed differences in compilation time are proven to be statistically different. If 

our p-value is below 5% we can argue to reject the null hypothesis. If our F-statistic is large and 

the p-value is small this is an indicator of significant differences in compilation times among 
languages. To achieve this we will be using a python program to output our statistical data for 

four different sections. Java and C++ in program one which is a loop of arithmetic and Java and 

C++ in program two which is a typical “Hello World” Program. 
 

4. RESULTS 
 

After concluding our experiments, we were able to get data from two different programs with 

three runs each against five different languages. Table 1 displays the data found in tabular form. 

From this data we can notice slight patterns between each language and the compilation time in 
Java and C++. Using a script, we were able to time the compilation time of each of the five 

languages over four different programs, two being in Java and two in C++. The script we wrote is 

designed to measure the compilation time of Java and C++ programs for each language. We first 
started by getting a timestamp now of runtime using the gdate command and storing it in a 

variable. We then ran a java compiler, for example the English file was compiled using “javac 

English.java”. After the program had compiled, we stored a new timestamp in another variable 
and outputted the difference between the two. This gave us an easy and accurate way to measure 

the time it took each file to compile. We wrote and compiled all the programs on the same 

machine and development environment. Our data shows that English typically takes longer to 

compile than other languages. 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

4 

Table 1. Compilation Times vs. Languages 

 

 
 

Our study has determined that Russian has shown to be quicker in program one while Chinese 
was the fastest in program two. English was slower in both instances for both languages with the 

exception of the “Hello World” program in Java run one. French, Italian, and Russian seemed to 

be fairly similar in most runs without a large change in compile time. We can see that the 
average compilation time for English running in Java was exceptionally high at 632.3 

milliseconds while the mean was 451.1 milliseconds. In Figure 1 we can identify English as an 

outlier in that it took almost twice as long to compile where Russian performed very well in C++ 

on run 3. Chinese, French, and Italian all had relatively similar compilation time averaging around 
360 milliseconds in C++ and 400 milliseconds in Java. 

 

 
 

Figure 1. Program One Compilation Times vs. Language 

 

According to our data shown in Figure 3 we do notice that the statistical difference between the 

two programs themselves differ as well. Program one showed a greater significant difference than 
program two. We would expect to see this because program two is almost the simplest program 

you can write while program one would model a real-world small program involving arithmetic 

that might be used in industry. Both were proven to be statistically significantly different but 

program two was just on the edge of that decision. 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

5 

 

 
 

Figure 2. Program Two Compilation Times vs. Language 

 

After obtaining the data in Figure 1 we could then decide to move to our ANOVA test to 
determine if this data was significantly different across languages. Using a python program, we 

wrote we were able to reliably get both F and P statistics for comparison to determine if our data 

would pass the hypothesis. Figure 2 identifies the results of our ANOVA test in the IDE console. 
Our python program performs ANOVA using the ‘f_oneway’ function in the ‘scipy.stats’ 

module. We first imported our modules, then defined our compilation times for program one and 

program two. The program then processed and outputted the F-statistic and p- value to the console 
which is displayed in Figure 3. 

 

 
 

Figure 3. ANNOVA Statistics Test 

 

 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

6 

The ANOVA data was derived following these specific steps, calculating the sum of squares, 
determining the degrees of freedom, calculating the mean squares, calculating the F-statistic and 

determining the critical value. An ANOVA test is deemed as significantly different if the P- value 

is lower than 0.005 and the F-statistic is high. We can see this in both Java and C++ compiler 

times in program one meaning that the compilation times in the looped arithmetic program are 
significantly different. We do not see as big of a difference in program two.  In program two we 

can see that the F-Statistic is relatively low while the P-value is just under 0.05. From this we can 

draw the conclusion that it is not as significantly different as program one. 
 

5. DISCUSSION 
 

Through the data we have collected we will now dive into its implications to fill the existing gap 

and relate it to the hypothesis we have previously addressed. We hypothesized that different 
choices of written languages such as English, French, Italian, Chinese, German, and Russian may 

play a factor in the speed of compilation. We ran a study on identical programs written in 

different languages to determine which is best for the optimization and speed of compile time. 
Our result is illustrated in Figure 1 and Figure 2 and supported by our calculations shown in 

Figure 3. 

 
Our study provides valuable insights into the influence of natural languages on the speed and 

optimization of compilation time. This is a largely unexplored area in the field due to the 

abundance of English documentation and resources. While other works such as that of 

Abdulsalam et al. focuses on compiler optimization for the reason of energy efficiency there are 
few if any studies that reference different languages' effect on compiler optimization. This 

knowledge could lead to new avenues for language designers and developers with respect to the 

linguistic factor of compiler optimization. Our focus is on comparative analysis of different 
natural languages for compilation speed with respect to both Java and C++ compilers. Our work 

complements the existing research done by Abdulsalam et al. by expanding the scope of 

optimization to consider linguistic factors. 
 

Through our analysis of English, Chinese, French, Italian, and Russian we reveal an interesting 

inequality. Russian demonstrated quicker compilation times in program one, while Chinese was 

the quickest and outperformed the others in program two. English in both experiments exhibited 
longer compilation times. There can be a number of different factors that lead to these 

conclusions, parsing complexity, language features, and language complexity. Figure 4 

demonstrates the effect of language features and language complexity that may be leading to the 
results found. 

 

 
 

Figure 4. UTF-16 Encodings in English vs Chinese 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

7 

In the “Hello, World!” program, the only difference the compiler would recognize is the string 
literal being output. For this reason we can determine that the language with the smallest amount 

of characters per word would be the most efficient for compilation. This is most likely why 

Chinese has outperformed all of the other languages in program two. Chinese has a more concise 

representation of characters which could lead to quicker compilation times. Chinese has 
 

a logographic writing system with fewer characters per word on average which could lead to a 

notable advantage. Beyond character density, there could be a parsing complexity and different 
language features that could be attributed to the complexity of the English language in 

compilation. 

 

6. FUTURE DIRECTIONS 
 
While our study sheds light on the different influences of natural languages on compiler 

optimization, there are many different ways for our research to expand. We ran our study with five 

different natural languages with two different compilers, C++, and Java. By adding We could 
expand both the natural languages and the compilers use to deepen our understanding of the 

effects of natural languages on compilation time. 

 
Another direction for compiler optimization with an emphasis with different natural languages 

could be to integrate machine learning techniques into our compiler optimization process. By 

investigating the correlation between natural languages and machine learning based compiler 

optimizations we could yield insights into creating an adaptive compiler that would be extremely 
optimized. 

 

Apart from compilation times we could also broaden our study into the concept of developer 
experience. This would include different factors that lead to the overall positive or negative 

experience of the programmer on their environment. Some factors may include code readability, 

ease of debugging, and program efficiency. The user experience for a non-English speaker can be 
greatly changed in a positive manner by giving a non-English outlet for programming and 

documentation which would improve all of the above factors. 

 

Lastly, we could incorporate cross-language compilation. Some languages interact differently to 
the compiler and by studying this further we could be able to determine in which scenarios 

different natural languages would prevail. After determining the best cases for each language, we 

could want to study the ability of cross compilation on different languages to improve overall 
compilation speed and program times. 

 

7. ETHICAL & ECONOMIC CONSIDERATIONS 
 

When considering different languages for compiler optimization we must also study the ethical 
considerations of our research. Language diversity is crucial in enabling cultural diversity in 

programming. Any of our findings are to promote inclusivity rather than to reinforce language 

biases in connection with computer science and software engineering. Our research underscores 
the dominance of English in programming, raising ethical considerations about inclusivity in 

language design. As the future of computer engineering, we should aim to improve inclusivity by 

considering linguistic diversity in the designs of our compilers and programming languages. 

 
Along with the ethical considerations of our research of different natural languages on 

compilation efficiency, we will be reviewing the economic considerations of program and 

compiler design in other languages. It is known that there is a correlation to the expansion of 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

8 

technology companies and research with economic prosperity. For this reason, we can identify 
that the prevalence of certain languages in programming can influence different industry trends 

and innovation along with job markets and skill demands. By creating diversity in program and 

compilation design we can stimulate and encourage exploration of new paradigms and problem- 

solving approaches. Allowing for other culturally non-English speaking areas to program in their 
native language we could foster innovation and development that can attract investment, talent 

and collaborations. 

 
Looking ahead, we can pave the way to potential avenues for technological innovation of 

compiler design. We could see advanced language models and compiler integration due to natural 

language processing. Future compiler may use different sophisticated language models 
 

to comprehend and adapt to different diverse language structures. This could lead to compilers 

that dynamically tailor their optimization to different natural languages being programmed in. 

 

8. CONCLUSION 
 

Our study aimed to explore the impact of different natural languages on the speed and 

optimization of compilation times within a Java and C++ compiler. Our research was inspired by 
the dominance of English in programming languages with very little previous studies involved. 

This potentially creates barriers for non-English speakers and influences compilation efficiency. 

Our comparative analysis encompassed English, Chinese, French, Italian, and Russian. This 

revealed intriguing patterns. Russian exhibited quicker compilation times in program one, while 
Chinese surpassed others in program two. Conversely, English surprisingly demonstrated longer 

compilation times. We determined this is most likely due to Parsing complexity as illustrated in 

Figure 3. 
 

Our work contributes to insights in a largely unexplored area in the field, complementing existing 

research on compiler optimization. While previous studies like Abdulsalam et al., primarily 
focused on energy efficiency, our emphasis is on the linguistic factors and expands the scope of 

optimization considerations for language designers and developers. Our findings show the effect 

of different language choices and their impact on compiler efficiency. By recognizing the 

influence of different natural languages on compilation speed we have opened new avenues for 
optimizing the compilers and promoting inclusivity in the global programming landscape. 

 

As we end our study, the avenues for research in the future on this topic are vast. Expanding our 
study to more programming languages we can deepen our understanding of different language 

effects on compilation time. We might also plan to incorporate the integration of machine 

learning into compiler optimization. As the world moves further toward artificial intelligence and 

machine learning it would only make sense that compiler design would follow a similar trend. We 
would also like to consider the developers experience, primarily those who are not native English 

speakers on code readability, ease of debugging, and access to documentation. 

 
We must also consider the ethical and economic implications of different languages in 

programming and compilation design. We should direct our efforts toward creating programming 

languages easier and more accessible to a global audience, avoiding biases and barriers. We can 
create more opportunities and foster a more competitive technology sector. We may have more 

advanced models and integration with natural language processing which could dynamically tailer 

compilation optimization to different natural languages. 

 
 



Computer Science & Engineering: An International Journal (CSEIJ), Vol 13, No 5/6, December 2023 

9 

REFERENCES 
 
[1] M. Demertzi, M. Annavaram and M. Hall, "Analyzing the effects of compiler optimizations on 

application reliability," 2011 IEEE International Symposium on Workload Characterization 

(IISWC), Austin, TX, USA, 2011, pp. 184-193, doi: 10.1109/IISWC.2011.6114178. 

[2] Z. Wang and M. O’Boyle, "Machine Learning in Compiler Optimization," in Proceedings of the 

IEEE, vol. 106, no. 11, pp. 1879-1901, Nov. 2018, doi: 10.1109/JPROC.2018.2817118. 

[3] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin and Z. Zong, "Program energy efficiency: The impact of 

language, compiler and implementation choices," International Green Computing Conference, 
Dallas, TX, USA, 2014, pp. 1-6, doi: 10.1109/IGCC.2014.7039169. 

[4] A. Hall, "Why does English-based, ‘typewritten’ code remain dominant, and what problems does it 

present?" May 12, 2022. Retrieved from https://dcs.warwick.ac.uk/~u2106099/docs/typewritten-

code.pdf 

[5] L. A. Zadeh, "From computing with numbers to computing with words. From manipulation of 

measurements to manipulation of perceptions," in IEEE Transactions on Circuits and Systems I: 

Fundamental Theory and Applications, vol. 46, no. 1, pp. 105-119, Jan. 1999, doi: 

10.1109/81.739259. 

[6] Pandža, N. B. (1970, January 1). Computer programming as a Second language. SpringerLink. 

https://link.springer.com/chapter/10.1007/978-3-319-41932-9_36 

[7] P Foster, A Tonkyn, G Wigglesworth, Measuring spoken language: a unit for all reasons, Applied 

Linguistics, Volume 21, Issue 3, September 2000, Pages 354–375, 
https://doi.org/10.1093/applin/21.3.354 

[8] Joao, R. (2022, November 24). On the linguistic and computational requirements for creating face-to 

... https://arxiv.org/pdf/2211.13804 

[9] Araujo, V., Marie-Francine Moens, & Soto, A. (2023). Learning sentence-level representations with 

predictive coding. Machine Learning and Knowledge Extraction, 5(1), 59. 

doi:https://doi.org/10.3390/make5010005 

[10] Wasserman, Anthony,(2023) Design of Software Representation Languages: A Historical 

Perspective. “https://ssrn.com/abstract=4382944” 

[11] Sperber, D. (1994). Understanding verbal understanding. What is intelligence, 179-198. 

[12] Tucker, A. (2003, June 13). Very high-level language design: A viewpoint. Computer Languages. 

https://www.sciencedirect.com/science/article/pii/0096055175900041 
[13] Philip J. Guo. 2018. Non-Native English Speakers Learning Computer Programming: Barriers, 

Desires, and Design Opportunities. In Proceedings of the 2018 CHI Conference on Human Factors 

in Computing Systems (CHI '18). Association for Computing Machinery, New York, NY, USA, 

Paper 396, 1–14. https://doi.org/10.1145/3173574.3173970 

http://www.sciencedirect.com/science/article/pii/0096055175900041

	1. Introduction
	2. Background
	3. Method
	4. Results
	5. Discussion
	6. Future Directions
	7. Ethical & Economic Considerations
	8. Conclusion
	References

